Getting Linux into Small Machines

L.C. Benschop
June 26, 2002

Copyright(©2002, L.C. Benschop, Eindhoven, The Netherlands. Permission
is granted to make verbatim copies of this document.

Contents

[1__Introduction| 1
1.1 _TheMissioh i 2
1.2 Whatn nthediskette? 3
1.3 TheHostand TargetSystem 3

[2 First Preparation| 4

(3 Building uClibc| 5

4 Building Busybox 7

b Other Essential Binaries 8

6 Populating the Root File System 9

[/ Building a Kernell 11

[8 Making a Bootable Diskette 12
8.1 Booting Linux directly fromadiskette 13
8.2 LILODbootabledisk 13
B3 RAMAISE o o e e e 15

|9 Using the Boot Disks 17

110_And Further| 19

11 Other Useful Resources 21

1 Introduction

This document serves as an instruction to build a minimal Linux system for use
on rescue diskettes, installation diskettes and embedded projects.

The Bootdisk Howto from the Linux Documentation Project also describes
how to build a bootable diskette, but a diskette created in this way has a few
shortcomings:

e It carries a lot of ballast such asittab , getty andlogin . For a
simple to use rescue disk, these programs and their associated configuration
files are not necessary.

e It contains full featured GNU shell utilities that occupy a lot of space.
e It contains the real GNU C libraries, which are very large indeed.

Therefore a boot disk created in this way contains not many useful programs and
it needs a comparatively large RAM disk to load. If you have 8MB of RAM, this
works, but you can forget this on a 4MB or even 2MB machine.

There are two excellent software packages that are specially designed for sav-
ing precious memory and disk space when you are on a tight budget:

° Busyboﬂ is a combination of a Unix shell and many common Unix utility
programs in a single executable. The size of Busybox is about half that
of the typicalbash shell and at that it already contains a few dozen Unix
commands, ranging frois to gzip . These are trimmed down versions
of course, but adequate in most cases.

° uCIibcﬂ is a scaled down Unix library. The GNU C library is huge, has
every feature on the planet and adheres to every conceivable standard on
every conceivable platform. uClibc is adequate for many applications and
uses much less space.

While the use of Busybox on rescue disks is common, uClibc is rarely used. There
are toolkits to create Busybox based diskettes, but IMHO there is no good instruc-
tional document that describes how to create a bootable Linux diskette with both
Busybox and uClibc. Th@&ootE diskettf] is a bootable Linux diskette with

http:/iwvww.busybox.net
Zhttp://www.uclibc.org
Shttp://www.everywhere.dk

http://www.busybox.net
http://www.uclibc.org
http://www.everywhere.dk

Busybox anduClibc . There are no instructions on the site how to customize
that disk to your needs.

In order to achieve huge space savings, we need to recompile everything from
source.

1.1 The Mission

Suppose we have an old 386 machine in the basement that comes with only 4MB
of RAM. We want to show our friends that this old beast can still run Linux.
We must be able to perform the following tasks:

e Partition a hard disk.

Make a swap partition on the hard disk an use it.

Create an ext2 file system on the hard disk and make it usable as the root
file system.

Mount diskettes and a hard disk.

Edit files.

So basically we have everything to install a Linux root file system on the hard
disk.

1.2 What needs to be on the diskette?

In order to get a Linux system up and running we need the following items:

e A boot loader. This program is loaded by the PC BIOS and this makes it
possible to load another program, such as the Linux kernel/

¢ the Linux kernel. This is the heart of the operating system.

e aroot file system. This is the file system that is mounted when the kernel
is started. The first program that runs (typicab¥pin/init has to be in
the root file system. The root file system can exist on a diskette, it can be
loaded in RAM at boot time or it can exist on the hard disk.

The root file system has to contain the following items:
e Binaries that we want to run.

e Startup scripts and other configuration files.

e Shared libraries.
e Device files.

e Mount points.

1.3 The Host and Target System

The host system is the computer on which we build the bootable diskette. It is
assumed to be a fairly modern PC with a modern installation of Linux. We will
assume that it is a Pentium with at least 32MB of RAM.

Also we assume that it contains a modern Linux system that contains the fol-
lowing software:

e Linux kernel 2.4

recent gcc (2.95 or later)

Loop devices (a kernel feature that allows you to mount a file system on a
file instead of a block device).

e Bzip2
e arecent LILO

You will need lots of hard disk space. Around 300MB would be enough.
The unpacked Linux kernel source tree alone takes around 150MB these days.
Paradoxically enough the end result will fit on a single 1.44MB diskette.

The target system is an old 386 PC with 4MB of RAM or more and zero, one
or two hard disks.

2 First Preparation

First create a directory where we will build the whole project. | chose the name
myboot . | will use this name throughout the document. Type the following
command in your home directory:

mkdir myboot

Obtain the following source packages and collect them into the directpiopot :

e The Linux kernel. In our example we take version 2.4.18, which was the
latest version at the time of writing. It may be desirable to use a kernel from
the 2.2 series instead as it requires less memory. Even a kernel from the 2.0
series may do the job, it's still maintained, but don’t ask me for how long.
Download it from the main kernel sille

e The small C libraryuClibc [}
e The shell and utilitie8usybox [f|

e The utility programs inutil-linux . These can be found at the main
kernel site in the kernel archive, tiils subdirectory.

e The package2fsprogs [|with programs to create and repair file systems.

Some of these packages may already be present in your Linux distribution.
For all packages excepClibc andBusybox this is very likely. But of course

there may exist more recent versions.
_ After you have downloaded all the sources, ymyboot directory may look
like this. Of course you may have different (more recent) versions of all programs:

total 27776

-FW-FW-r-- 1 lennartb lennartb 613464 Jun 9 11:44 busybox-0.60.3.tar.bz2
-FW-FW-r-- 1 lennartb lennartb 1376698 Jun 12 19:56 e2fsprogs-1.27.tar.gz
-W-TW-r-- 1 lennartb lennartb 24161675 Jun 8 19:28 linux-2.4.18.tar.bz2
-FW-FW-r-- 1 lennartb lennartb 1170790 Jun 8 19:00 uClibc-snapshot.tar.bz2
-"W-rW-r-- 1 lennartb lennartb 1065574 Jun 9 16:01 util-linux-2.11r.tar.bz2

So let’'s unpack what we've got. Type the following commands when inside
themyboot directory:

bunzip2 -c busybox-0.60.3.tar.bz2 | tar xvf -
gunzip -c e2fsprogs-1.27.tar.gz | tar xvf -
bunzip2 -c linux-2.4.18.tar.bz2 | tar xvf -
bunzip2 -c uClibc-snapshot.tar.bz2 | tar xvf -
bunzip2 -c util-linux-2.11r.tar.bz2 | tar xvf -

After this you should have the sources of the five packages, each in its own sub-
directory.

Ahttp://www.kernel.org
Shttp://www.uclibc.org
Bhttp://www.busybox.net
http://e2fsprogs.sourceforge.net

http://www.kernel.org
http://www.uclibc.org
http://www.busybox.net
http://e2fsprogs.sourceforge.net

Note: themyboot directory is assumed to be created under a user's home
directory. In several places in this text we will use an absolute path to this direc-
tory and on my system this lsome/lennartb/myboot . Other users should
replace this with their own home directory.

Note: in this document you see many sequences of shell commands. Of course
you can put them into shell scripts, so you need not retype them when you try to
build a modified boot disk.

3 Building uClibc

The trickiest part to get right is probably the C library, especially because we want
to use shared libraries. The space savings are tremendous and once this is done
right, you can fit many more utilities on a diskette. The directory where the shared
libraries exist on the target system (where they will be used) is different from the
directory where they exist on the host system. Without special tricks, the binaries
that are compiled wituClibc won’t run on the host system.

First create the following subdirectories under thygboot directory.

e uclibc-dev is the directory that contains everything you need to com-
pile programs withuClibc . Int contains the include files for theClibc
library and special versions gtc and similar programs. In fact it is a kind
of cross-compiler, albeit for the same processor architecture.

e rootfs isthe directory where everything goes that will be on your bootable
diskette.

Nextcd into themyboot/uClibc directory. There run the following com-
mand:

In -s extra/Configs/Config.i386 Config
Next edit theConfig file as follows:

¢ Your native compiler will probably compile for a 386. If not, you can edit
the line with CROSS=

e Change the line with KERNEISOURCE to
KERNEL_SOURCE=/home/lennartb/myboot/linux

It is important that this directory matches the kernel that will eventually be
used on the boot diskette.

e Check the configuration options. They look reasonable at the moment, ex-
cept that you have to séf~S = true . Even though large file system
support seems unnecessary on old 386 machines with hard disks well under
2GB, some programs will complain if it is not there.

e Below the BIG FAT WARNING: change the line to
SHARED_LIB_LOADER_PATH=/lib.
e Change the line with DEVEIPREFIX to

DEVEL_PREFIX=/home/lennartb/myboot/uclibc-dev

Run the following commands to make and install the library. Note that we do
notinstall the library as root as we do not install it in a system-wide directory.

make
make install
make PREFIX=/home/lennartb/myboot/rootfs install_target

The first command compiles the libraries, the second command installs the
development code into the uclibc-dev directory and the last command installs the
shared libraries into the rootfs directory. These will end up on the root file system
of the bootable diskette.

Compiling with uClibc can be as simple as putting tiedibc-dev direc-
tory first in your path and just runningake. Note that you cannot run the pro-
grams you have just made on the host system.

4 Building Busybox

Firstcd into themyboot/busybox-0.60.3 subdirectory.
Edit the fileConf.h as follows:

e Add or remove support for programs you do or do not want. For each pro-
gram there is #define BB _XXXline that can be commented out or not.
Uncomment the BBVI line, as you would probably need an editor. Leave
the network related programs commented out if you do not enable network
support, otherwise uncomment them. In our example we will not use net-
work support. It's basically your choice what to put in or not. Though it
may be possible to start Linux with an interactive shell instead of init, we
will leave the init program in.

e Uncomment th8B_.FEATUREUSETERMIOSline.
Edit theMakefile as follows:
e Append-m386 to theCFLAGSEXTRAline.

e Uncomment the€C=line below the comment about uClibc and change it to
CC=/home/lennartb/myboot/uclibc-dev/bin/gcc

e You could enable LFS support, as you already have selected it uCitec
library as well.

Now build the program.

make
make PREFIX=/home/lennartb/myboot/rootfs install

Because you have linked with the dynamiClibc library and these are not
installed in the host system/8b directory, the program cannot run. There is
a trick to work around it: by using the chroot command, you can run a program
whose root directory is the specified directory. Become root and type the follow-
ing command:

/usr/sbin/chroot /home/lennartb/myboot/rootfs /bin/sh

The shell that you are now in is the shell inside the
/home/lennartb/myboot/rootfs directory. This shell thinks that this
rootfs directory isin fact the root directory: even the shared librariagiibc
inthe/lib directory will be found. Type the commaital / and it will be clear.
Exit thechroot subshell with Control-D and everything will be back to normal.

Now you have most common Unix utilities including an editor and a shell and
you've spent only 576kB of disk space!

5 Other Essential Binaries

While Busybox offers us many essential Unix utilities, we still miss a few essential
programs for our mission. We cannot partition a hard disk and we cannot create
or repair ext2 file systems. Busybox can be made to inciokiis andfsck for
Minix file systems, but not for the much more common Ext2 file system. Both util-
linx and e2fsprogs complain if you had not buil€libc with large file support.

First start another shell and type the following command:

export PATH=/home/lennartb/myboot/uclibc-dev/bin:$PATH

From now on, thauClibc version ofgcc will be used instead of the normal
version.

For now we need util-linux only for thiglisk utility. The build procedure is
as follows:

e cd into the util-linux source directory.
¢ Edit theMCONFIJile as follows:

— Change the CPU line near the top of the fileBU=i386 .

— Add another line to the large CFLAGS statement near the bottom of
the file:

-D__NO_CTYPE \

This line must look like the other lines in the same statement, including
the backslash with a space before it and nothing aftr it.

e Run make.

e Make stops with an error while trying to buildount . We already have a
mount inbusybox , so we leave it that way.

e cd into the fdisk directory.
e Run make.

e Move the filefdisk to the directory
/home/lennartb/myboot/roofts/sbin

Now we will build e2fsprogs as follows:

e Create a directory namdulild under the e2fsprogs source directory and
cd toit.

e Configure and build the progranﬁ:

Jconfigure
make BUILD_ CC=/usr/bin/gcc

8This option causes real functions to be useddétwwer() and friends, instead of macros.
The macros evaluate their arguments twice, wHdigk uses a call to an input function as
argument tdolower()

9The BUILD_CC option specifies that we want to use the norgal for building a certain
program that must be run on the host system. Otherwise it would be linkedu®lthc and
would not run.

e Strip and move e2fsck and mke2fs to tioetfs directory.

strip e2fsck/e2fsck.shared

mv e2fsck/e2fsck.shared \
/home/lennartb/myboot/rootfs/sbin/e2fsck

strip mke2fs

mv misc/mke2fs /home/lennartb/myboot/rootfs/sbin

This is the time to build any other programs you will need. Link them with
uClibc and move them to the one of the binary subdirectories imyigoot/rootfs
directory. If linking withuClibc does not work, try to link statically using the
ordinarygcc .

6 Populating the Root File System

The binaries and libraries are already installed inrthetfs directory. Now we
will complete the root file system. First create the remaining directories in rootfs.

cd /home/lennartb/myboot/rootfs
mkdir dev tmp etc proc mnt etc/init.d

Add the device nodes. We will only add the necessary device nodes: two
floppy disks, two hard disks with 8 partitions each and four terminals. Further we
need some memory related devices and a ram disk. Become root and cd to the
dev subdirectory in thenyboot/rootfs file system.

mknod fd0O b 2 0
mknod fdl b 2 1
mknod hda b 3 0
mknod hdal
mknod hda2
mknod hda3
mknod hda4
mknod hdab
mknod hda6
mknod hda7
mknod hda8
mknod hdb b 3 64
mknod hdbl b 3 65
mknod hdb2 b 3 66
mknod hdb3 b 3 67

OO T OTUTOTUTOTUTOT
WWWwwWwwwww
O~NOOUThA WN PR

10

mknod hdb4 b 3
mknod hdb5 b 3
mknod hdb6 b 3
mknod hdb7 b 3
mknod hdb8 b 3
mknod tty ¢ 5 0

mknod console c¢
mknod ttyl ¢ 4 1
mknod tty2 ¢ 4 1
mknod tty3 ¢ 4 1
mknod tty4 ¢ 4 1
mknod ram b 1 1
mknod mem ¢ 1 1
mknod kmem ¢ 1 2
mknod null ¢ 1 3

mknod zero ¢ 1 5

Add files in the/etc subdirectory. Thanit program frombusybox
works without a login procedure, so tipasswd andgroup files are not re-
ally needed. You could of course create single line versions for the root user and
group. Even thénittab file is not essential andusybox provides a reason-

able default. You are free to copy tkeripts/busybox file from the source
directory and customize it. The only file | added@tic wasinit.d/rcS
#!/binsh

mount -t proc none /proc
Make all files in the root file system owned by root:
chown -R 0:0 /home/lennartb/myboot/rootfs

Now we have a complete root file system in a directory. We still need a kernel
and a way to boot. Further we need to transfer the file system to a floppy disk.

7 Building a Kernel

Now it is time to build a kernel. For the target system we will build a kernel that
is different from the host system kernel. W build it under thygboot directory.
Firstcd to themyboot/linux subdirectory.

The most important job is configuring the kernel. Run the following com-
mand:

make menuconfig

11

Instead ofmenuconfig you can useonfig (notrecommended!) orconfig
This will give a usable kernel for the target system.

e Processor type menu: processor family must be 386, enable math emulation,
switch off everything else. Most 386 systems have no 387 coprocessor, So
they do need math emulation.

e General setup menu: switch off networking support, PCI support, system
V IPC and sysctl support. Support ELF binaries, other formats can be dis-
abled.

e Code maturity, Module support, Memory Technology, Parallel port, Plug
and play, Multi-device, Telephony, SCSI, 120, Amateur radio, ISDN, Old
CDROM, Input core, Multimedia, Sound, USB and kernel hacking sub-
menus: disable everything.

¢ Block device submenu: support floppy, RAM disk and initial RAM disk.

e ATA/IDE/MFM/RLL submenu: support, keep everything under the ATA/IDE. ..
block devices submenu the default.

e Character devices submenu: Support virtual terminal, console on virtual
terminal, Unix 98 PTY, disable everything else.

e File systems. Keep second extended, proc and dev PTS enabled. If you
want to mount DOS diskettes, enable fat, msdos and maybe vfat. If you
want to mount a CDROM, enable ISO9660.

e Console drivers. Keep VGA text console enabled.

e EXxit an say Yes to save changes.

Of course you must adapt the configuration to the target system you are using.
If your target system has PCI, it would be better to enable it. In that case, you
probably have a 486DX or a Pentium, so the math emulation may go. If you have
SCSI on your target system, you should of course enable support for it and for the
host adapted you are using. If you have SCSI and no IDE devices installed, you
can disable ATA/IDE/MFM/RLL support.

Now we only need to build the kernel:

make clean
make dep
make zlmage

The kernel described here should be around 400kB and it should worknaite
zlmage . Usemake bzlmage instead if you build a kernel with more features,
e.g. networking support.

12

8 Making a Bootable Diskette

We will describe three methods to boot Linux from a diskette.

e Booting the kernel directly from a diskette and mount a root file system on
a different diskette.

e Booting the kernel with LILO and mount a root file system on a diskette
(possibly the same diskette).

e Booting the kernel with LILO and add a RAM disk for the root file system.

Instead of LILO we could use another boot loader, such as SYSLINUX or GRUB.
This is considered to be outside the scope of this text.

For the boot diskettes we have to format 1.44MB floppy disks or take format-
ted disks that may be erased. In Linux there are two programs to format a diskette.
One program isdformat . A diskette is formatted as follows:

fdformat /dev/fdOH1440
Some distributions haveuperformat instead. This is used as follows:
superformat --hd /dev/fdO

We assume 3.5” HD diskettes and we only format them in the standard way
(1440kB), so we do not try to get a few more sectors per track or a few more
tracks.

All commands in this section should be done as root.

8.1 Booting Linux directly from a diskette

We do not have to use a complicated boot loader such a LILO in order to boot
a Linux system. The Linux kernel has its own primitive boot loader. When the
kernel is transferred directly to a diskette with tthé command, the kernel can
boot itself. This way we cannot supply a command line and it works only with
diskettes. We also cannot use third feature, but there is a different way of
loading a RAM disk, which we will not discuss (it is discussed in the Bootdisk
HOWTO).

First we have to create a file system on the root diskette and transfer the files
to it. Type the following commands:

mke2fs /dev/fd0
mkdir /home/lennartb/myboot/rootfs/mnt
mount /dev/fd0 /home/lennartb/myboot/mnt

13

cp -a /home/lennartb/myboot/rootfs/* \
/home/lennartb/myboot/mnt
umouunt /dev/fdO

The root file system will be mounted read-only. If this is not desired, add the
following line to the fileetc/init.d/rcS while the floppy is mounted:

mount -0 remount /dev/fdO /

Next we create the boot disk. With a different diskette in the drive type the
following command:

dd if=/home/lennartb/myboot/linux/arch/boot/zimage \
of=/dev/fd0
rdev /dev/fd0 /dev/fdO

Therdev command selects the device on which the root file system should be
mounted by the kernel after booting. We could use the following command to
make the diskette mount the root file system on the first hard disk partition.

rdev /dev/fdO /dev/hdal

8.2 LILO bootable disk

First make the root diskette as described in the previous section. There are two
ways to proceed:

e Mount the root diskette and install the kernel and LILO on it. This way
we have a self-contained diskette that boots and has the root file system.
It works for the kernel and the utilities as described in this article, but you
would quickly run out of disk space when adding more features to the kernel
or more utilities to the root file system.

e mke2fs a different diskette for the kernel and LILO. This way we still have
two diskettes and more space on each.

The LILO diskette is either the root diskette to which we will add LILO or the
separate diskette on which we will install LILO.
Mount the LILO diskette and add the kernel and boot loader to it:

mount /dev/fd0 /home/lennartb/myboot/mnt/

mkdir /home/lennartb/myboot/mnt/boot

cp /home/lennartb/myboot/linux/arch/i386/boot/zImage \
/home/lennartb/myboot/mnt/boot

cp /boot/lilo/boot.b /home/lennartb/myboot/mnt/boot

14

Create the fildhome/lennartb/myboot/lilo.conf as follows:

boot=/dev/fd0
install=’home/lennartb/myboot/mnt/boot/boot.b
map=/home/lennartb/myboot/mnt/boot/map
delay=100
compact
image=/home/lennartb/myboot/mnt/boot/zimage
label=linux
root=/dev/fd0

All relevant files mentioned itilo.conf are on the mounted diskette. The
delay option will wait 10 seconds, so we have the opportunity to type a com-
mand line in LILO. Thecompact option makes loading much faster. Try it
without and compare.

Run LILO. This will add amap file to the/boot directory on the diskette
and it will add a boot sector to the diskette. The boot sector will load the loader in
boot.b, this will load the map file and the map file contains a list of sectors of the
kernel, so this can be loaded.

lilo -C /home/lennartb/myboot/lilo.conf
Finally unmount the LILO diskette.

unount /dev/fd0

8.3 RAMdisk
A RAM disk has the following advantages.
e Once the system is booted, programs will load faster.

e Once the system is booted, the diskette can be removed from the drive.
Therefore the floppy drive can be used to load other programs or to restore
a hard disk partition from backup diskettes.

e The RAM disk image can be stored compressed on the diskette. A full
1.44MB or even 2MB file system can be stored compressed on a diskette
together with a kernel. A compressed 4MB or 8MB file system is also
possible as long as it is not completely filled. After booting the system, you
can copy programs from other diskettes into the RAM disk.

The RAM disk has the following disadvantages:

15

e ltrequires more RAM to run. The RAM disk configuration described in this
system will boot on a system with 4MB of RAM, but this is pretty much the
limit. More kernel features or more utilities would make this RAM disk
unusable on a 4MB system.

e It requires more steps to create or to adapt the root file system.

e Changes made to the root file system are not permanent. This is either
an advantage (security) or a disadvantage (configuration changes are not
possible).

First we have to create an image file for the RAM disk. We limit its size to
1000K, so it still runs on a 4MB machine. Create a file system on the image file.
The-N 200 option is necessary to create enough inodes on the file system, as
there are a lot of symbolic links.

dd if=/dev/zero of=/home/lennartb/myboot/root.img \
bs=1k count=1000
mke2fs -F -N 200 /home/lennartb/myboot/root.img

Next mount the image file using a loop device and copy all files of the root file
system to it. The loop option to mount makes it possible to mount a regular file as
if it were a block device.

mount -0 loop /home/lennartb/myboot/root.img \
/home/lennartb/myboot/mnt

cp -a /home/lennartb/myboot/rootfs/* \
/home/lennartb/myboot/mnt

umount /home/lennartb/myboot/mnt

Compress the root file system image. This image file will be copied to a
diskette.

gzip -9 /home/lennartb/myboot/root.img

Create a new LILO diskette, mount it and add the kernel, root file system
image and boot loader to it:

mke2fs /dev/fd0

mount /dev/fd0 /home/lennartb/myboot/mnt/

mkdir /home/lennartb/myboot/mnt/boot

cp /home/lennartb/myboot/linux/arch/i386/boot/zimage \
/home/lennartb/myboot/mnt/boot

cp /home/lennartb/myboot/root.img.gz \
/home/lennartb/myboot/mnt/boot

cp /boot/lilo/boot.b /home/lennartb/myboot/mnt/boot

16

Create the filéhome/lennartb/myboot/lilo-initrd.conf as fol-
lows:

boot=/dev/fd0
install=’home/lennartb/myboot/mnt/boot/boot.b
map=/home/lennartb/myboot/mnt/boot/map
delay=100
compact
image=/home/lennartb/myboot/mnt/boot/zimage
label=linux
root=/dev/ram
initrd=/home/lennartb/myboot/mnt/boot/root.img.gz
image=/home/lennartb/myboot/mnt/boot/zimage
label=noram
root=/dev/fd0

The configuration file is almost the same, except foritlied option. This
causes the boot loader to load a RAM disk image into memory. The Linux kernel
will decompress it to a RAM disk device and mount this as the root file sy&em
Further we added moram option, so it is also possible to use this LILO diskette
without a RAM disk.

Run LILO:

lilo -C /home/lennartb/myboot/lilo-initrd.conf
Finally unmount the LILO diskette:

unount /dev/fdO

9 Using the Boot Disks

First boot Linux by putting the appropriate Linux diskette into the floppy drive.

e If you boot from a diskette without LILO, you should see a “Loading” mes-
sage right away. After some disk activity you should see the message “Un-
compressing Linux” and a little later you should see the kernel messages.
Next it prompts for the root diskette. Remove the boot disk and insert the
root diskette and press enter.

1Theinitrd feature makes it possible to mount the root file system twice, once on the RAM
disk loaded by the boot loader and once on another device (most likely a disk partition). The RAM
disk can contain an initialization routine to load the required modules to mount the root disk. This
two stage root file system feature is not used here.

17

e If you boot from a diskette with LILO, you should see the LILO message. If
you press the space bar, you should see the boot prompt from LILO, if you
don’t you should see the message “Loading linux” after 10 seconds. Af-
ter some disk activity you should see the “Uncompressing Linux” message,
some kernel messages and next the kernel will prompt for a root diskette. If
the LILO diskette contains the root file system, you just press enter, other-
wise you have to swap disks first.

¢ If you boot from a diskette with LILO and a RAM disk, everything starts
the same as in the previous case. Instead of prompting you for a boot disk,
the kernel should display a message that a compressed RAM disk image
was found. It automatically proceeds after decompressing.

As soon as the root file system is mounted, you should see a message from Busy-
box. A few seconds later you are invited to press enter. After you press enter, you
get a root shell prompt, which should be very familiar. With the function keys
ALT-F1, ALT-F2, ALT-F3 and ALT-F4 you can switch to four virtual terminals
and you should be able to get a shell prompt on all four of them.

WARNING: If your root file system is on a floppy disk (you are not using a
RAM disk), do not remove this diskette from the drive when Linux is running.
If you use a RAM disk or if you moved all of your root file system to the hard
disk and booted with the optiaomot=/dev/hd?? |, thenitis OK to remove the
diskette as soon as Linux has started.

Type thereboot command in order to shut the system down. If you are using
a root file system on a diskette, you should wait until the PC has rebooted before
removing the diskette.

What we can do is installing the linux root file system on the hard disk. First
we have to (re)partition the hard disk. Type the following command:

fdisk /dev/hda

While insidefdisk use thep command to show the current partition table.
Maybe you find an old DOS partition that you still want to backup. If so, quit
fdisk now using theg command. If you can part with that old DOS partition,
you can delete partitions with tilecommand and create new partitions with the
command. Finally you can write the modified partition table withwlmmand.
Usingfdisk you should be able to create the following partitions:

e A swap partition (set type to 0x82 with thecommand) of around 16MB.
Suppose this is partition 2dev/hda2).

e A Linux partition occupying the rest of the disk. Suppose this is partition 1
(/dev/indal).

18

After partitioning the hard disk, create a swap partition withrtheswap com-
mand, create an ext2 file system and copy all data to it. Type the following com-
mands. Of course we assume that the Linux partitiofdév/hdal and the
swap partition igdev/hda2 . Otherwise you must supply appropriate device
names.

mkswap /dev/hda2

swapon /dev/hda2

mke2fs /dev/hdal

mount /dev/hdal /mnt

mkdir /mnt/proc /mnt/mnt

cp -a /bin /sbin /usr /etc /lib /dev /tmp /mnt

Edit the file/mnt/etc/init.d/rcS . If you haven't learnedii by now,
tough luck.
#!/bin/sh
mount -a
swapon -a
Edit the file/mnt/etc/fstab as follows:
/dev/hdal / ext2 defaults 0 O
none /proc proc defaults 0 O

/dev/hda2 swap swap defaults 0 O
Now we can shut the system down.

umouunt /dev/hdal
reboot

Reboot the system with the boot diskette in the drive.
As soon as you see the word LILO, press the SHIFT key. Now you see a boot
prompt. If you use a boot diskette without a RAM disk, type:

linux root=/dev/hdal
If you use a boot diskette with a RAM disk, type this at the boot prompt:
noram root=/dev/hdal

If you have a boot diskette without LILO, you have to go to the host system
and change the root device using tdev command:

rdev /dev/fd0 /dev/hdal

After this, reboot the target system with the modified diskette.

In any case, your system should now mount the root file system on your hard
disk and your floppy drive will be free to mount other diskettes, so you can copy
more files to the hard disk.

19

10 And Further

We showed you how to create a boot diskette with one set of features. Now you
know how to do this, you should be able to customize it to your needs. You can
turn it into a full featured rescue disk, an installation disk for your brand new
Linux distribution, a demonstration disk or an embedded project, such as a router
or print server.

First try to add kernel module support. Modules come in very handy for de-
vices that are seldom used or are only available on some target systems. Serial
ports, network adapters and SCSI features may be candidates for compiling as
modules, as well as additional file systems. In order to use modules you have to
do the following:

e Reconfigure the kernel with module support enabled. Configure certain fea-
tures to be compiled as modules.

¢ Rebuild the kernel.

¢ Run the additional make stepake modules .

e Copy the kernel to the boot disk (and run LILO if necessary).

e Copy the modules to the root file system or a different diskette.

e Rebuild busybox with thensmod andrmmod commands enabled. Move
this to the root file system as well.

¢ If you use a RAM disk, you should recreate a RAM disk image, compress
it and rerun LILO on your boot disk . If you hadn’t made a shell script to
perform all these tasks, you should do by now.

One additional feature that you might try (it only exists in 2.4 kernels) is the
devfs file system. Instead of @ev directory with hundreds of useless device
node you mount a pseudo file system on/tte directory, not unlike théproc

file system. There the device nodes appear for only the devices that exist.

After module support you may want to add network support. Once you have
added an Ethernet adapter to your old 386, you can connect it to your LAN and
you do not need diskettes so often. With a little bit of luck, this still runs on a
4MB machine, but forget about using a RAM disk.

¢ Rebuild the kernel with networking enabled. Of course you have to rebuild
the modules as well.

¢ Rebuild Busybox with network commands enabled (ifconfig, telnet, ping
etc.)

20

e Copy all relevant files to their respective places.
¢ Recreate the RAM disk image and rerun LILO if appropriate.
You can add additional programs and libraries to the target system.

e Many programs needurses . Thencurses library is reported to be
usable withuClibc . You must recompile it in order to achieve this. You
will probably need a stripped dowarmcap file on your target system as
well.

e With ncurses and the standard libraries o€libc , you should really be
able to compile a lot of programs that do not require X.

e Some make files try to run the programs you have just built. This can be
a problem. It should be possible to copy th&libc shared libraries to
the/lib directory of the host system, as their names are different from the
glibc libraries. The programs linked agairgdibc will still work and
theuClibc programs will work too. | just haven't tried this, so don't do it
on a life-critical system or if you haven't made a backup.

e Evengcc andX are reported to work withiClibc , so give them a try! A
target system witluClibc as the only C library should therefore be able
to run a C development environment and X. Building this is certainly not
for beginners.

The RAM disk version of the boot disk runs on a 4MB machine, the version
without RAM disk should run with 3MB or RAM, but nothing so far has run on a
machine with just 2MB of RAM. In the good old days, people ran Linux routinely
on such machines and it should still be possible with modern (if not the newest)
software. Some hints:

e Do not use a RAM disk.

e Remove more features from the kernel. RAM disk support can be removed,
use the disk-only driver instead of the more functional IDE driver, remove
file systems such as FAT and ISO9660. If you do have a 387 in that 2MB
box, get rid of math emulation.

e Use an older kernel, 2.2 or even 2.0. Note: if you use 2.0, remember to
use theO none option on mke2fs if you make a file system for the tar-
get system. Kernel 2.0 does not understand some features added by later
kernels.

21

e Remove more functions from busybox. This should not help much as busy-
box will be demand loaded. Parts that are not demanded, will not be loaded.
It may help to a certain degree. Features line ctdorand command line
editing can be removed and a more primitive shell can be utilized.

e Remove init and starbin/sh directly at startup.

e If this lets you do dddisk , mkswap andswapon, you can get swapping
enabled on the target system. From there you should be fine.

11 Other Useful Resources

This article should have shown you how to create useful bootable diskettes and
minimal Linux systems with just the programs you need. You cannot be without
the following resources:

e Linux from scratcﬁ. If you got the taste of creating your own Linux sys-
tem, one program at a time, one file at a time, compiling everything from
source, then this is the next big thing. This site contains a detailed instruc-
tion how to compile a complete Linux system completely from source, in-
cluding the libraries, C compiler and utilities. The target system is created
on the hard disk and not on a diskette.

° Freshme. This site contains an index of almost all programs available
for Linux. Most open source programs can be found there.

e Linuxdo¢®y This site contains all Linux related documentation you ever
wanted.

e My homepag¥&] contains the online version of this document.

Unttp:/iwww.linuxfromscratch.org
12 http://www.freshmeat.net
Lnttp://www.linuxdoc.org
Ynttp:/lwww.xs4all.nl/"lennartb

22

http://www.linuxfromscratch.org
 http://www.freshmeat.net
http://www.linuxdoc.org
http://www.xs4all.nl/~{}lennartb

	Introduction
	The Mission
	What needs to be on the diskette?
	The Host and Target System

	First Preparation
	Building uClibc
	Building Busybox
	Other Essential Binaries
	Populating the Root File System
	Building a Kernel
	Making a Bootable Diskette
	Booting Linux directly from a diskette
	LILO bootable disk
	RAM disk

	Using the Boot Disks
	And Further
	Other Useful Resources

