
BASH REFERENCE

Aliasing ............................................................... 6
Arithmetic Evaluation........................................ 8
Arrays .................................................................. 13
Brace Expansion................................................. 6
Built-In Commands ............................................ 16
Command Line Arguments ............................... 3
Command Substitution ...................................... 8
Conditional Expressions .................................... 15
Control Commands ............................................ 14
Definitions ........................................................... 2
Execution Order ................................................. 13
Field Splitting ..................................................... 8
Functions ............................................................ 12
History Substitution ........................................... 5
Input/Output ...................................................... 13
Invocation and Startup ...................................... 3
Job Ids and Job Control ..................................... 24
Options To set .................................................... 22
Options To shopt ................................................ 23
Options To test ................................................... 21
Patterns ............................................................... 9
Pre-Defined Variables ........................................ 10
Process Substitution .......................................... 8
Prompting ........................................................... 4
Quoting ............................................................... 6
Readline .............................................................. 25
Readline Directives ............................................ 25
Readline Key Bindings ....................................... 25
Readline Variables .............................................. 26
Restricted bash................................................... 2
Signals and Traps ............................................... 13
Special Characters.............................................. 24
Tilde Substitution ............................................... 6
Variable Assignment.......................................... 9
Variable Names .................................................. 9
Variable Substitution ......................................... 7

CONTENTS

This reference card was written by Arnold Robbins. We
thank Chet Ramey (bash’s maintainer) for his help.

Specializ ed Systems Consultants, Inc.
(206)FOR-UNIX/(206)782-7733

FAX: (206)782-7191
E-mail: sales@ssc.com

URL: http://www.ssc.com

Linux Journal—The Premier Linux Magazine
Technical Books and CDs

SAMBA: Integrating UNIX and Windows
Shell Tutorials, KSH Reference

VI & Emacs References, VI Tutorial

OTHER SSC PRODUCTS:

© Copyright 1999 Specialized Systems Consultants, Inc.,
P.O. Box 55549, Seattle, WA 98155-0549.
All Rights Reserved.

1



This card describes version 2.02.0 of bash.

Several typefaces are used to clarify the meaning:
• Serifa Bold is used for computer input.
• Serifa Italic is used to indicate user input and for

syntactic placeholders, such as variable or cmd.
• Serifa Roman is used for explanatory text.

blank − separator between words. Blanks consist of one
or more spaces and/or tab characters. In addition,
words are terminated by any of the following
characters:

; & ( ) | < > space tab newline

command − a series of words.

list − one or more pipelines. Can be separated by ;, &,
&&, || and optionally be terminated by ;, &.

n − an integer.

name − a variable, alias, function or command name.

keyword − a reserved word in the bash language.
Keywords are special only after a ; or newline, after
another keyword, and in certain other contexts.

pat − a bash pattern. See Patter ns.

pipeline − a command or multiple commands connected
by a pipe (|).

string − a collection of characters treated as a unit.

substitution − the process of replacing parts of the
command line with different text, e.g., replacing a
variable with its value. bash performs many
substitutions. This card lists them in the order they are
performed.

word − a generic argument; a word. Quoting may be
necessary if it contains special characters.

DEFINITIONS

If bash is invoked as rbash, or with the −r option, it is
restricted. The following actions are not allowed in a
restricted shell:

changing directory with cd
setting or unsetting $SHELL or $PATH
using path names for commands that contain /
using a path name that contains / for the . command
impor ting functions from the environment
parsing $SHELLOPTS at startup
redirecting output with any of >, >|, <>, >&, &>, or >>
using exec to run a different command
adding or deleting built-in commands with enable
using command −p to bypass a restricted $PATH
using set +r or set +o restricted

These restrictions are in effect after executing all
star tup files, allowing the author of the startup files full
control in setting up the restricted environment. (In
practice, restricted shells are not used much, as they
are difficult to set up correctly.)

RESTRICTED bash

If you find an error in this reference and are the first to
repor t it, we will send you a free copy of any of our
references. Please write, or send electronic mail to
bugs@ssc.com.

Error Reporting

2



bash accepts the one letter options to set, and the
additional one letter and GNU-style long options shown
below.

$ bash [options] [args]
− ends option processing
−− ends option processing
−c cmd execute cmd (default reads

command from file named in
first entry of args and found via
path search)

−D print all double quoted strings
that are preceded by a $ to
stdout. This implies −n, no
commands are executed

−i set interactive mode
−r set restricted mode
−s read commands from stdin

(default)
−−dump−po−strings same as −D, but output in GNU

gettext format
−−dump−strings same as −D
−−help display a help message and exit

successfully
−−login act like a login shell
−−noediting do not use the readline library

to read commands when
interactive

−−noprofile do not read any of the
initialization files. See
Invocation And Startup, below

−−norc do not read ˜/.bashrc if
interactive. See Invocation And
Star tup, below

−−posix follow the IEEE POSIX 1003.2
standard

−−rcfile file use file instead of ˜/.bashrc if
interactive

−−restricted same as −r
−−verbose same as set −v
−−version print version information on

stdout and exit successfully

COMMAND LINE ARGUMENTS

There are five ways that bash runs: normal interactive,
normal non-interactive, as sh, in POSIX mode, or
invoked via rshd.

1. Normal interactive: Login shells run commands in
/etc/profile. The first of ˜/.bash_profile, ˜/.bash_login,
and ˜/.profile that is found is executed. This stage is
skipped if −−noprofile is used.

Upon logout, bash runs ˜/.bash_logout if it exists.

Interactive non-login shells execute ˜/.bashrc, if it
exists. The −−rcfile ifile option changes the file that is
used.

2. Normal non-interactive: Non-interactive shells do
variable, command, and arithmetic substitution on the
value of $BASH_ENV, and if the result names an
existing file, that file is executed.

INVOCATION AND STARTUP

3



3. Invoked as sh: Interactive login shells read and
execute /etc/profile and ˜/.profile if they exist. These
files are skipped if −−noprofile is used. Interactive
shells expand $ENV and execute that file if it exists.
Non-interactive shells do not read any startup files.
After the startup files are executed, bash enters POSIX
mode.

4. POSIX mode: When started with −−posix, interactive
shells expand $ENV and execute the given file. No
other startup files are read.

5. Invoked via rshd: If run from rshd and not invoked as
sh, bash reads ˜/.bashrc. The −−norc option skips this
step, and the −−rcfile option changes the file, but rshd
usually does not pass these options on to the shell it
invokes.

If $SHELLOPTS exists in the environment at startup,
bash enables the given options.

INVOCATION AND STARTUP (continued)

When interactive, bash displays the primary and
secondary prompt strings, $PS1 and $PS2. bash
expands the following escape sequences in the values
of these strings.

\a an ASCII BEL character (octal 07)
\d the date in ‘‘Weekday Month Day’’ format
\e an ASCII escape character (octal 033)
\h the hostname up to the first dot (.)
\H the full hostname
\n a newline
\r a carriage return
\s the name of the shell (basename of $0)
\t the time in 24-hour HH:MM:SS format
\T the time in 12-hour HH:MM:SS format
\u the user’s username
\v the version of bash (e.g., 2.02)
\V the version and patchlevel of bash (e.g., 2.02.0)
\w the current working directory
\W the basename of the current working directory
\! the history number of this command
\# the command number of this command
\$ a # if the effective UID is 0, otherwise a $
\@ the time in 12-hour am/pm format
\\ a backslash
\nnn the character corresponding to octal value nnn
\[ star t a sequence of non-printing characters
\] end a sequence of non-printing characters

The history number is the number of the command in
the history list, which may include commands restored
from the history file. The command number is the
number of this command starting from the first
command run by the current invocation of the shell.

The default value of PS1 is ‘‘\s−\v\$ ’’.

PROMPTING

4



History expansion is similar to csh’s. It is enabled by
default in interactive shells. History expansion
happens before the shell breaks the input into words,
although quoting is recognized and quoted text is
treated as one history ‘‘word’’.

History substitution is performed on history events,
which consist of an event designator (which previous line
to start with), a word designator (which word from that
line to use, starting with zero), and one or more
optional modifiers (which parts of the words to use).
Colons separate the three parts, although the colon
between the event designator and word designator
may be omitted when the word designator begins with
ˆ, $, *, −, or %. Each modifier is separated from the next
one with a colon. The histchars variable specifies the
star t-of-history and quick substitution characters, and
also the comment character that indicates that the rest
of a line is a comment. The previous command is the
default event if no event designator is supplied.

The event designators are:
! star t a history substitution
!n command line n
!−n current line minus n (n previous)
!! the previous command
!str most recent command line starting with

str
!?str[?] most recent command line containing str
!# the entire command line typed so far
ˆoldˆnewˆ quick substitution: repeat last command

changing old to new

The word designators are:
0 the zero’th word (command name)
n word n
ˆ the first argument, i.e., word one
$ the last argument
% the word matched by the most recent

!?str? search
x−y words x through y. −y is short for 0−y
* words 1 through the last (like 1−$)
n* words n through the last (like n−$)
n− words n through the next to last

The modifiers are:
e remove all but the suffix of a filename
g make changes globally, use with s

modifier, below
h remove the last part of a filename,

leaving the ‘‘head’’
p print the command but do not execute it
q quote the generated text
r remove the last suffix of a filename
s/old/new/ substitute new for old in the text. Any

delimiter may be used. An & in the
replacement means the value of old. With
empty old, use last old, or the most recent
!?str? search if there was no previous old

t remove all but the last part of a filename,
leaving the ‘‘tail’’

x quote the generated text, but break into
words at blanks and newline

& repeat the last substitution

HISTORY SUBSTITUTION

5



\c quote single character c
`...` old style command substitution
"..." text treated as a single argument, double

quotes removed; variable, command and
arithmetic substitutions performed;
use \ to quote $, \, `, and "

$"..." like "...", but locale translation done
´...´ text treated as a single argument, single

quotes removed; text between quotes
left alone, cannot include ´

$´...´ text treated as a single argument, $ and
single quotes removed; no substitutions
performed; ANSI C and additional
escape sequences processed:

\a aler t (bell) \v ver tical tab
\b backspace \ddd octal value ddd
\f form feed \xhhh hex value hhh
\n newline \\ backslash
\r carriage return \e escape, not in ANSI C
\t horizontal tab

QUOTING

alias name=value ...

Aliases are expanded when a command is read, not
when executed. Alias names can contain any non-
special character, not just alphanumerics, except for =.
Alias expansion is done on the first word of a command.
If the last character of the replacement text is a blank,
then the next word in the command line is checked for
alias expansion. Aliases can even be used to redefine
shell keywords, but not in POSIX mode.

ALIASING

Brace expansion is similar to csh’s. A word must
contain at least one unquoted left brace and comma to
be expanded. bash expands the comma-separated
items in order, the result is not sorted. Brace
expansions may be nested. For example:

$ mkdir /usr/{gnu,local}/{src,bin,lib}

BRACE EXPANSION

˜ substitute $HOME
˜user substitute user’s home directory
˜+ substitute $PWD
˜− substitute $OLDPWD
˜n substitute ${DIRSTACK[n]}. A leading +

or − is allowed: negative values count
from the end of the stack

Tilde substitution happens after alias expansion. It is
done for words that begin with ˜ and for variable
assignment.

In variable assignments, it is also done after a : in the
value. Tilde substitution is done as part of word
expansion. This means for ${name op word}, word will be
checked for tilde substitution, but only if the operation
requires the value of the right-hand side.

TILDE SUBSTITUTION

6



$name reference to shell variable name
$ {name } use braces to delimit shell variable name
$ {name − word }

use variable name if set, else use word
$ {name = word }

as above but also set name to word
$ {name ? word }

use name if set, otherwise print word and
exit (interactive shells do not exit)

$ {name + word }
use word if name is set, otherwise use
nothing

${name[n] } element n in array name
${#name} length of shell variable name
${#name[*] } number of elements in array name
${#name[@] } number of elements in array name
${name#pat} remove shortest leading substring

of name that matches pat
${name##pat} remove longest leading substring

of name that matches pat
${name%pat} remove shortest trailing substring

of name that matches pat
${name%%pat}

remove longest trailing substring
of name that matches pat

${name:start}
${name:start:length}

length characters of name star ting at
start (counting from 0); use rest of
value if no length. Negative start
counts from the end. If name is * or @
or an array indexed by * or @, start
and length indicate the array index and
count of elements. start and length can
be arithmetic expressions

${name/pattern/string}
value of name with first match of pattern
replaced with string

${name/pattern}
value of name with first match of pattern
deleted

${name//pattern/string}
value of name with every match of
pattern replaced with string

${name/#pattern/string}
value of name with match of pattern
replaced with string; match must occur
at beginning

${name/%pattern/string}
value of name with match of pattern
replaced with string; match occurs at end

Note: for −, =, ?, and +, using name: instead of name
tests whether name is set and non-NULL; using name
tests only whether name is set.

For #, ##, %, %%, /, //, /#, and /%, when name is * or @
or an array indexed by * or @, the substring or
substitution operation is applied to each element.

VARIABLE SUBSTITUTION

7



Arithmetic evaluation is done with the let built-in
command, the ((...)) command and the $((...))
expansion for producing the result of an expression.

All arithmetic uses long integers. Use typeset −i to get
integer variables. Integer constants look like [base#]n
where base is a decimal number between two and 64,
and n is in that base. The digits are 0-9, a-z, A-Z, _ and
@. A leading 0 or 0x denote octal or hexadecimal.

The following operators based on C, with the same
precedence and associativity, are available.

+ − unary plus and minus
! ˜ logical and bitwise negation
** exponentiation (not in C)
* / % multiply, divide, modulus
+ − addition, subtraction
<< >> left shift, right shift
< <= > >= comparisons
== != equals, not equals
& bitwise AND
ˆ bitwise XOR
| bitwise OR
&& logical AND, short circuit
| | logical OR, short circuit
?: in-line conditional
= += −= *= /= %= &= |= ˆ= <<= >>=

assignment operators

Inside let, ((...)), and $((...)), variable names do not need
a $ to get their values.

ARITHMETIC EVALUATION

$(command) new form
`command ` old form

Run command, substitute the results as arguments.
Trailing newlines are removed. Characters in $IFS
separate words (see Field Splitting). The new form is
preferred for simpler quoting rules.

$((expression)) arithmetic substitution

The expression is evaluated, and the result is used as an
argument to the current command.

COMMAND SUBSTITUTION

cmd <(list1) >(list2)

Runs list1 and list2 asynchronously, with stdin and
stdout respectively connected via pipes using fifos or
files in /dev/fd. These file names become arguments to
cmd, which expects to read its first argument and write
its second. This only works if you have /dev/fd or fifos.

PROCESS SUBSTITUTION

Quoted text becomes one word. Otherwise,
occurrences of any character in $IFS separate words.
Multiple whitespace characters that are in $IFS do not
delimit empty words, while multiple non-whitespace
characters do. When $IFS is not the default value,
sequences of leading and trailing $IFS whitespace
characters are removed, and printable characters in
$IFS surrounded by adjacent $IFS whitespace
characters delimit fields. If $IFS is NULL, bash does
not do field splitting.

FIELD SPLITTING

8



? match single character in filename
* match 0 or more characters in filename
[chars ] match any of chars

(pair separated by a − matches a range)
[!chars ] match any except chars
[ˆchars ] match any except chars

If the extglob option to shopt is set, the following
extended matching facilities may be used.

?(pat-list) optionally match any of the patterns
*(pat-list) match 0 or more of any of the patterns
+(pat-list) match 1 or more of any of the patterns
@(pat-list) match exactly 1 of any of the patterns
!(pat-list) match anything but any of the patterns

pat-list is a list of one or more patterns separated by |.

The POSIX [[=c=]] and [[.c.]] notations for same-weight
characters and collating elements are accepted. The
notation [[:class:]] defines character classes:

alnum alphanumeric lower lower-case
alpha alphabetic print printable
blank space or tab punct punctuation
cntrl control space whitespace
digit decimal upper upper-case
graph non-spaces xdigit hexadecimal

Three shopt options affect pattern matching.

dotglob include files whose names begin with .
nocaseglob ignore case when matching
nullglob remove patterns that don’t match

When expanding filenames, . and .. are ignored,
filenames matching the patterns in $GLOBIGNORE are
also ignored and a leading . must be supplied in the
pattern to match filenames that begin with . .
However, setting GLOBIGNORE enables the dotglob
option. Include .* in GLOBIGNORE to get the default
behavior.

PA TTERNS

Variable names are made up of letters, digits and
underscores. They may not start with a digit. There is
no limit on the length of a variable name, and the case
of letters is significant.

VARIABLE NAMES

Assignments to integer variables undergo arithmetic
evaluation. Variable assignments have one of the
following forms.

name = word set name to word
name[index] = word

set element index of array name to word
name =( word ...)

set indexed array name to words
name =( [num]=word ...)

set given indices of array name to words

VARIABLE ASSIGNMENT

9



$n use positional parameter n, n ≤ 9
${n} use positional parameter n
$* all positional parameters
$@ all positional parameters
"$*" equivalent to "$1 $2 ..."
"$@" equivalent to "$1" "$2" ...
$# number of positional parameters
$− options to shell or by set
$? value returned by last command
$$ process number of current shell
$! process number of last background

cmd
$_ name of program in environment at

star tup. Value of last positional
argument in last command. Name of
changed mail file in $MAILPATH

$auto_resume enables use of single-word
commands to match stopped jobs for
foregrounding. With a value of exact,
the word must exactly match the
command used to start the job. With
a value of substring, the typed word
can be a substring of the command,
like %?string

$BASH full file name used to invoke bash
$BASH_ENV in normal non-interactive shells only,

value is variable, command and
arithmetic substituted for path of
star tup file (See Invocation And
Star tup)

$BASH_VERSION the version of bash
$BASH_VERSINFO[0] the major version number

(release)
$BASH_VERSINFO[1] the minor version number

(version)
$BASH_VERSINFO[2] the patchlevel
$BASH_VERSINFO[3] the build version
$BASH_VERSINFO[4] the release status
$BASH_VERSINFO[5] same as $MACHTYPE
$CDPATH search path for cd command
$DIRSTACK[*] array variable containing the pushd

and popd directory stack
$ENV in interactive POSIX mode shells, or

when invoked as sh, value is variable,
command and arithmetic substituted
for path of startup file

$EUID the effective user id (readonly)
$FCEDIT default editor for the fc command (no

default value)
$FIGNORE colon-separated list of suffixes giving

the set of filenames to ignore when
doing filename completion using
readline

$GLOBIGNORE colon-separated list of patterns giving
the set of filenames to ignore when
doing pattern matching

$GROUPS[*] readonly array variable with the list
of groups the user belongs to

$histchars characters that control csh-style
history (default: !ˆ#). See Histor y
Substitution

PRE-DEFINED VARIABLES

10



$HISTCMD history number of the current
command

$HISTCONTROL with a value of ignorespace, do not
enter lines that begin with spaces
into the history file. With a value of
ignoredups, do not enter a line that
matches the previous line. Use
ignoreboth to combine both options

$HISTFILE where command history is stored
$HISTFILESIZE maximum number of lines to keep in

$HISTFILE
$HISTIGNORE colon-separated list of patterns; if the

current line matches any of them, the
line is not entered in the history file.
& represents the last history line.
Patterns must match the whole line

$HISTSIZE number of previous commands to
keep available while bash is running

$HOME home directory for cd command and
value used for tilde expansion

$HOSTFILE file in format of /etc/hosts to use for
hostname completion

$HOSTNAME name of the current host
$HOSTTYPE string describing the current host
$IFS field separators (space, tab, newline)
$IGNOREEOF for interactive shells, the number of

consecutive EOFs that must be
entered before bash actually exits

$INPUTRC name of readline star tup file,
overrides ˜/.inputrc

$LANG name of current locale
$LC_ALL current locale; overrides $LANG and

other $LC_ variables
$LC_COLLATE current locale for character collation,

includes sorting results of filename
expansion

$LC_CTYPE current locale for character class
functions (see Patter ns)

$LC_MESSAGES current locale for translating $"..."
strings

$LINENO line number of line being executed in
script or function

$MACHTYPE a string in GNU cpu-company-system
format describing the machine
running bash

$MAIL name of a mail file, if any
$MAILCHECK check for mail every n seconds (60

default)
$MAILPATH filenames to check for new mail; uses

: separator; filename may be followed
by ?message; $_ in message is
matched mail file name. Overrides
$MAIL

$OLDPWD previous working directory
$OPTARG value of last argument processed by

getopts
$OPTERR if set to 1, display error messages

from getopts (default: 1)
$OPTIND index of last argument processed by

getopts

PRE-DEFINED VARIABLES (continued)

11



$OSTYPE string describing the
operating system running
bash

$PATH command search path
$PIPESTATUS[*] array variable containing exit

status values from processes
in the most recently executed
foreground pipeline

$PPID process id of shell’s parent
$PROMPT_COMMAND command to run before each

primary prompt
$PS1 primary prompt string

(\s−\v\$)
$PS2 secondary prompt string (>)
$PS3 select command prompt

string (#?)
$PS4 tracing prompt string (+)
$PWD current working directory
$RANDOM set each time it’s referenced,

0 − 32767
$REPLY set by the select and read

commands
$SECONDS number of seconds since shell

invocation
$SHELL name of this shell
$SHELLOPTS colon-separated list of the

enabled shell options for set
−o

$SHLVL incremented by one for each
sub-bash

$TIMEFORMAT format string for output of
time keyword. Special
constructs introduced by %.

%[p][l]R elapsed secs
%[p][l]U user CPU secs
%[p][l]S system CPU secs
%P CPU percentage
%% literal %

Optional p gives the precision,
the number of digits after the
decimal point; it must be
between 0 and 3. Optional l
produces a longer format, in
the form MMmSS.FFs

$TMOUT number of seconds to wait
during prompt before
terminating

$UID the real user id (readonly)

PRE-DEFINED VARIABLES (continued)

Functions run in the same process as the calling script,
and share the open files and current directory. They
access their parameters like a script, via $1, $2 and so
on. $0 does not change. return may be used inside a
function or . script. Functions share traps with the
parent script, except for DEBUG. Functions may be
recursive, and may have local variables, declared using
declare, local, or typeset. Functions may be exported
into the environment with export −f.

FUNCTIONS

12



Redirections are done left to right, after pipes are set
up. Default file descriptors are stdin and stdout. File
descriptors above 2 are marked close-on-exec.

&>word send stdout and stderr to word
>&word send stdout and stderr to word
[n]<file use file for input
[n]>file use file for output
[n]>|file like >, but overrides noclobber
[n]>>file like > but append to file if it exists
[n]<>file open file for read/write (default: fd0)
[n]<&m duplicate input file descriptor from m
[n]>&m duplicate output file descriptor from m
[n]<&− close input file descriptor
[n]>&− close output file descriptor
[n]<<word

input comes from the shell script; treat a line with
word as EOF on input. If any of word is quoted, no
additional processing is done on input by the shell.
Otherwise:
• do variable, command, arithmetic substitutions
• ignore escaped newlines
• use \ to quote \, $, `, and first character of word

[n]<<− word as above, but with leading tabs ignored

Of &> and >&, the first is preferred. It is equivalent to
>word 2>&1.

INPUT/OUTPUT

All substitutions and I/O redirections are performed
before a command is actually executed.

bash maintains an internal hash table for caching
external commands. Initially, this table is empty. As
commands are found by searching the directories listed
in $PATH, they are added to the hash table.

The command search order is shell functions first, built-
in commands second, and external commands (first in
the internal hash table, and then via $PATH) third.

EXECUTION ORDER

Signal handling is done with the trap built-in command.
The word argument describing code to execute upon
receipt of the signal is scanned twice by bash; once
when the trap command is executed, and again when
the signal is caught. Therefore it is best to use single
quotes for the trap command. Traps are executed in
order of signal number. You cannot change the status
of a signal that was ignored when the shell started up.

Traps on DEBUG happen after commands are executed.

Backgrounded commands (those followed by &) will
ignore the SIGINT and SIGQUIT signals if the monitor
option is turned off. Otherwise, they inherit the values
of the parent bash.

SIGNALS AND TRAPS

Arrays in bash have no limits on the number of
elements. Array indices start at 0. Array subscripts
can be arithmetic expressions. Array elements need
not be contiguous. bash does not have associative
arrays.

ARRAYS

13



! pipeline
execute pipeline. If exit status was non-zero, exit
zero. If exit status was zero, exit 1

case word in [[(]pat 1[|pat 2 ]...) list ;; ]... esac
execute list associated with pat that matches word.
Field splitting is not done for word. pat is a bash
pattern (see Patter ns). | is used to indicate an OR
condition. Use leading ( if case is inside $( )

for name [in words] ; do list ; done
sequentially assign each word to name and execute
list. If in words is missing use the positional
parameters

[function] func ( )  { list ; }
define function func, body is list (see Functions)

if list1; then list2 [; elif list3 ; then list4]...[; else list5] ; fi
if executing list1 returns successful exit status,
execute list2 else ...

select name [in words] ; do list ; done
print a menu of words, prompt with $PS3 and read a
line from stdin, saving it in $REPLY. If the line is
the number of one of the words, set name to it,
otherwise set name to NULL. Execute list. If in
words is missing use the positional parameters.
bash automatically reprints the menu at the end of
the loop

time [−p] pipeline
execute pipeline; print elapsed, system and user
times on stderr.
−p print times in POSIX format
The $TIMEFORMAT variable controls the format of
the output if −p is not used. bash uses the value
$’\nreal\t%3lR\nuser\t%3lU\nsys\t%3lS’ if there is
no value for $TIMEFORMAT

until list 1 ; do list 2 ; done
like while but negate the termination test

while list 1 ; do list 2 ; done
execute list 1. If last command in list 1 had a
successful exit status, execute list 2 followed by
list 1. Repeat until last command in list 1 returns an
unsuccessful exit status

((...))
arithmetic evaluation, like let "..."

[[expression]]
evaluate expression, return successful exit status if
true, unsuccessful if false (see Conditional
Expressions for details)

( list )
execute list in a sub-shell

{ list ; }
execute list in the current shell

CONTROL COMMANDS

14



Used with the [[...]] compound command, which does
not do pattern expansion or word splitting.

string true if string is not NULL
−a file true if file exists (−e is preferred)
−b file true if file is a block device
−c file true if file is a character device
−d file true if file is a directory
−e file true if file exists
−f file true if file is a regular file
−g file true if file has setgid bit set
−G file true if file group is effective gid
−h file true if file is a symbolic link
−k file true if file has sticky bit set
−L file true if file is a symbolic link
−n string true if string has non-zero length
−N file true if file exists and was modified since

last read
−o option true if option is on
−O file true if file owner is effective uid
−p file true if file is a fifo (named pipe)
−r file true if file is readable
−s file true if file has non-zero size
−S file true if file is a socket
−t filedes true if filedes is a terminal
−u file true if file has setuid bit set
−w file true if file is writable
−x file true if file is executable
−z string true if string has zero length
file1 −nt file2 true if file1 is newer than file2 or file2

does not exist
file1 −ot file2 true if file1 is older than file2 or file2

does not exist
file1 −ef file2 true if file1 and file2 are the same file
string == pattern

true if string matches pattern
string != pattern

true if string does not match pattern
string1 < string2

true if string1 is before string2
string1 > string2

true if string1 is after string2
exp1 −eq exp2 true if exp1 equals exp2
exp1 −ne exp2 true if exp1 does not equal exp2
exp1 −lt exp2 true if exp1 is less than exp2
exp1 −gt exp2 true if exp1 is greater than exp2
exp1 −le exp2 true if exp1 is less than or equal to exp2
exp1 −ge exp2 true if exp1 is greater than or

equal to exp2
(expression) true if expression is true, for grouping
! expression true if expression is false
exp1 && exp2 true if exp1 AND exp2 are true
exp1 | | exp2 true if exp1 OR exp2 is true

If file is /dev/fd/n, then, if there is no /dev/fd directory,
file descriptor n is checked. Otherwise, the real
/dev/fd/n file is checked. Linux, FreeBSD, BSD/OS (and
maybe others) return info for the indicated file
descriptor, instead of the actual /dev/fd device file.

Both && and || are short circuit. Operands of
comparison operators undergo arithmetic evaluation.
For == and !=, quote any part of pattern to treat it as a
string.

CONDITIONAL EXPRESSIONS

15



These commands are executed directly by the shell.
Almost all accept −− to mark the end of options.

. file
source file

read and execute commands from file. If
arguments, save and restore positional params.
Search $PATH; if nothing found, look in the current
directory

: null command; returns 0 exit status
[ see test
alias [−p] [name[=value] ...]

create an alias. With no arguments, print all
aliases. With name, print alias value for name
−p print alias before each alias

bg [ jobid]
put jobid in the background

bind [−m map] [−lpPsSvV]
bind [−m map] [−q func] [−r keyseq] [−u func]
bind [−m map] −f file
bind [−m map] keyseq:func

display and/or modify readline function and key
bindings. The syntax is same as for ˜/.inputrc
−f file read new bindings from file
−l list the names of all readline functions
−m map use the keymap map
−p list readline functions and bindings

for re-reading
−P list readline functions and bindings
−q func show which keys invoke func
−r keyseq remove bindings for keyseq
−s list readline key sequences and macros

for re-reading
−S list readline key sequences and macros
−u func remove key bindings for func
−v list readline variable names and values

for re-reading
−V list readline variable names and values

break [n]
exit from enclosing for, while, until or select loop.
If n is supplied, exit from n’th enclosing loop

builtin shell-builtin [ args ...]
execute shell-builtin with given args and return
status. Useful for the body of a shell function that
redefines a built-in, e.g., cd

cd [−LP] [dir]
change current directory to dir ($HOME default).
Do directory path search using value of $CDPATH
−L use logical path for cd .., $PWD (default)
−P use physical path for cd .., $PWD
If both are given, the last one on the command line
wins

cd [−LP] −
change current directory to $OLDPWD

command [−pvV] name [arg ...]
without −v or −V, execute name with arguments arg
−p use a default search path, not $PATH
−v print a one word description of name
−V print a verbose description of name

continue [n]
do next iteration of enclosing for, while, until or
select loop. If n is supplied, iterate n’th enclosing
loop

BUILT-IN COMMANDS

16



declare [±afFirx] [−p] [name[=value]]
typeset [±afFirx] [−p] [name[=value]]

set attributes and values of variables. Inside
functions, create new copies of the variables. Using
+ instead of − turns attributes off. With no names
or attributes, print every variable’s name and
attributes
−a name is an array
−f each name is a function
−F don’t show function definitions (bodies)
−i name is an integer; arithmetic

evaluation is done upon assignment
−r mark names readonly
−x mark names for export

dirs [−clpv] [+n] [−n]
display the directory stack
+n show n’th entry from left, n ≥ 0
−n show n’th entry from right, n ≥ 0
−c clear the directory stack
−l print a longer format listing
−p print the stack one entry per line
−v print the stack one entry per line, with

index numbers
disown [−ar] [−h] [job ...]

with no options, remove named jobs from the table
of active jobs
−a remove or mark (with −h) all jobs
−h mark each job to not receive a SIGHUP

when bash terminates
−r use with −h to mark just running jobs

echo [−eEn] [words]
echo words; −− is not special
−e expand \-escapes (see echo(1))
−E never expand \-escapes
−n don’t output trailing newline
printf is more portable

enable [−adnps] [−f file] [name ...]
enable and disable shell built-ins, or load and
unload new built-ins from shared library files.
Disabling a built-in allows use of a disk file with the
same name as a built-in
−a print all built-ins, with their status
−d delete a built-in loaded with −f
−f file load a new built-in name from file
−n disable name, or print disabled built-ins

with no names
−p print enabled built-ins
−s print only POSIX special built-ins

eval [words]
evaluate words and execute result

exec [−a name] [−cl] [words]
execute words in place of the shell. If redirections
only, change the shell’s open files
−a use name for argv[0]
−c clear the environment first
−l place a − on argv[0] (like login(1))
If the exec fails, non-interactive shells exit, unless
the shopt option execfail is set

exit [n]
exit with return value n. Use $? if no n

BUILT-IN COMMANDS (continued)

17



export [−fnp] [name[=value] ...]
with no arguments, print names and values of
expor ted variables. Otherwise, expor t names to the
environment of commands
−f names refer to functions
−n stop exporting each name
−p print export before each variable

fc [−e editor][−nlr][first [last]]
print a range of commands from first to last from last
$HISTSIZE commands
−e run editor if supplied; if not, use first of

$FCEDIT, $EDITOR, or vi on
commands; execute result(s)

−l list on standard output instead of editing
−n don’t print line numbers
−r reverse order of commands

fc −s [old=new] [command]
substitute new for old in command (or last command
if no command) and execute the result

fg [ jobid]
put jobid in the foreground

getopts optstring name [arg ...]
parse parameters and options (see bash(1))

hash [−r] [−p file] [name]
with no arguments, print the hash table contents,
giving hit count and file name
−p file enter file for name in the hash table
−r clear the internal hash table
Assignment to $PATH also clears the hash table

help [pattern]
print help. With pattern, print help about all the
commands that match pattern

history [n]
history −anrw [file]
history [−c]
history −p arg [...]
history −s arg [...]

with no options, print the command history. An
argument of n prints only n lines. If supplied, use
file instead of $HISTFILE
−a append new history lines to history file
−c clear the history list
−n read new history lines in the file into the

internal history list
−p perform history substitution and print

the results
−r replace internal history with contents of

history file
−s place the args into the history list

for later use
−w write the internal history to the file

jobs [−lnprs] [jobid ...]
jobs −x command [args ...]

list information about jobs
−l also list process id
−n only list stopped or exited jobs
−p only list process groups
−r only list running jobs
−s only list stopped jobs
−x replace any jobid in the command line

with the corresponding process group ID,
and execute the command

BUILT-IN COMMANDS (continued)

18



kill [−sig] jobid ...
kill [−s signame] [−n signum] jobid ...

send SIGTERM or given signal to named jobids.
Signals are names listed in /usr/include/signal.h
with or without the prefix ‘‘SIG’’. Stopped jobs get
a SIGCONT first if sig is either SIGTERM or
SIGHUP

kill −l [sigs ...]
list signal names and/or numbers. If sig is a
numerical exit status, print the signal that killed the
process

let arg ...
evaluate each arg as an arithmetic expression; exit 0
if the last expression was non-zero, 1 otherwise
(see Ar ithmetic Evaluation)

local [name[=value] ...]
create variables with the given values local to a
function. With no operands, print a list of local
variables. Must be used inside a function

logout
exit a login shell

popd [−n] [+n] [−n]
remove entries from the directory stack. With no
arguments, remove the top entry and cd there
+n remove n’th entry from left, n ≥ 0
−n remove n’th entry from right, n ≥ 0
−n don’t change directory

printf format [arg ...]
print output like ANSI C printf, with extensions
%b expand escape sequences in strings
%q print quoted string that can be re-read
Format conversions are reused as needed

pushd [−n] [dir]
pushd [−n] [+n] [−n]

add an entry to the directory stack. With no
arguments, exchange the top two entries
+n rotate the stack so that the n’th

entry from left is at the top, n ≥ 0
−n rotate the stack so that the n’th

entry from right is at the top, n ≥ 0
−n don’t change directory
dir push dir on the stack and cd there

pwd [−LP]
print working directory name
−L print logical path (default)
−P print physical path
If both are given, the last one on the command line
wins

read [−a name] [−er] [−p prompt] [names ...]
read stdin and assign to names. $IFS splits input.
$REPLY is set if no name given. Exit 0 unless end-
of-file encountered
−a read words into indexed array name
−e use readline if reading from a terminal
−p print prompt if reading from a terminal

before reading
−r \ at end of line does not do line

continuation

BUILT-IN COMMANDS (continued)

19



readonly [−afp] [name=value ...]
mark names read-only; print list if no names
−a each name must be an array
−f each name must be a function
−p print readonly before each variable

return [n]
exit function or . script with return value n. With no
n, return status of last command. If not in function
or . script, print an error message

set [−options] [−o option] [words]
set flags and options (see Options To set). words set
positional parameters

set [+options] [+o option] [words]
unset flags and options

shift [n]
rename positional parameters; $n+1=$1 ...
n defaults to 1

shopt [−opqsu] [option ...]
print or change values of shell options. With no
arguments, print shell option information
−o only change set −o options
−p print settings for re-reading
−q quiet mode; exit status indicates

option status
−s set (enable) given option; with no

options, print those that are set
−u unset (disable) given option; with no

options, print those that are unset
(See Options To shopt)

suspend [−f]
suspend the shell until SIGCONT is received
−f force suspension, even for login shell

test
evaluate conditional expressions (see Options To
test and Conditional Expressions)

times
print accumulated process times

trap [−lp] [word] [sigs]
execute word if signal in sigs received. sigs are
numbers or signal names with or without ‘‘SIG’’.
With no word or sigs, print traps. With no word,
reset sigs to entry defaults. If word is ‘‘−’’, reset sigs
to entry defaults. If word is the null string, ignore
sigs. If sigs is 0 or EXIT, execute word on exit from
shell. If sigs is DEBUG, run word after every
command.
−l print a list of signal names and numbers
−p print traps with quoting

type [−apt] name ...
describe how the shell interprets name
−a print all possible interpretations

of name
−p print the name of the file to execute if

name is an external program
−t print a keyword describing name

BUILT-IN COMMANDS (continued)

20



ulimit [type] [options] [limit]
set or print per-process limits
type (default is both):

−H hard limit
−S soft limit

options:
−a all (display only)
−c core file size
−d ‘‘k’’ of data segment
−f maximum file size
−m ‘‘k’’ of physical memory
−n maximum file descriptor + 1
−p size of pipe buffers
−s ‘‘k’’ of stack segment
−t cpu seconds
−u max processes for one user
−v ‘‘k’’ of vir tual memory

−f is assumed if no options are given. The size for
−p is in 512-byte blocks; the others are in sizes of
1024 bytes

umask [−pS] [mask]
set file creation permissions mask to complement of
mask if octal, or symbolic value as in chmod. With
no arguments, print current mask. An octal mask is
permissions to remove, a symbolic mask is
permissions to keep
−p print output for re-reading
−S print current mask in symbolic form

unalias [−a] [names]
remove aliases names
−a remove all aliases

unset [−fv] [names]
unset variables names (same as −v)
−f unset functions names
−v unset variables names
Unsetting LINENO, MAILCHECK, OPTARG,
OPTIND, RANDOM, SECONDS, TMOUT and _
removes their special meaning, even if used
afterwards

wait [jobid ...]
wait for job jobid; if no job, wait for all children

BUILT-IN COMMANDS (continued)

The test command, and its synonym [...], are built-in to
bash. The command accepts all of the options listed in
the Conditional Expressions section. However, since it is
a command, options and arguments must be quoted to
get proper behavior, and normal pattern expansion and
field splitting are done. Parentheses used for grouping
must be quoted. Arithmetic expansion is not done for
numeric operators, and pattern matching is not done
for == and !=. test complies with POSIX.

The −a and −o options have the following meanings,
instead of the ones listed in Conditional Expressions:

−a logical AND
−o logical OR

OPTIONS TO test

21



The set command is complicated. Here is a summary.
Use + instead of − to turn options off. With no
arguments, set prints the names and values of all
variables.

set [±abBCefhHkmnpPtuvx] [±o option ...] [arg ...]
−a automatically export variables upon

assignment
−b print job completion messages

immediately, don’t wait for next prompt
−B enable brace expansion (default)
−C force >| to overwrite for existing files
−e exit upon non-zero exit from a command
−f disable pattern expansion
−h save command locations in the

internal hash table (default)
−H enable !-style history (default)
−k place all variable assignments in

the environment (obsolete)
−m run background jobs in their own

process group, print a message
when they exit; set automatically for
interactive shells on job control systems

−n read commands without executing them
(ignored if interactive)

−o set options; with no arguments, print
current settings
allexport same as −a
braceexpand same as −B
emacs use an emacs-style line

editor (default)
errexit same as −e
hashall same as −h
histexpand same as −H
history enable history
ignoreeof like IGNOREEOF=10
keyword same as −k
monitor same as −m
noclobber same as −C
noexec same as −n
noglob same as −f
notify same as −b
nounset same as −u
onecmd same as −t
physical same as −P
posix obey the POSIX 1003.2

standard
privileged same as −p
verbose same as −v
vi use a vi-style line editor
xtrace same as −x

−p don’t read $ENV, do not take shell
functions from environment, and ignore
options in $SHELLOPTS environment
variable

−P follow the physical directory structure
for commands that change the directory

−t read and execute one command,
then exit

−u make it an error to substitute an unset
variable

−v print input lines as they’re read

OPTIONS TO set

22



−x print commands as they’re executed,
preceded by expanded value of $PS4.
Output is quoted for later reuse

− turn off −v, −x, stop looking for flags;
any remaining args set the
positional parameters

− − do not change flags; set positional
parameters from argument list;
with no args, unset the positional
parameters

OPTIONS TO set (continued)

The shopt command sets or unsets a number of options
that affect how bash behaves. This section describes
each option’s effect when enabled. Unless noted, they
are all disabled by default.

cdable_vars
treat an argument to cd that is not a directory as a
variable whose value is the directory name

cdspell
attempt to correct minor spelling errors in
arguments to cd. Errors tried are transposed
characters, a missing character or an extra
character. Only obeyed in interactive shells

checkhash
check that a command in the hash table still exists
before trying to execute it. If it doesn’t, search
$PATH

checkwinsize
check the window size after each command and
update $LINES and $COLUMNS

cmdhist
attempt to save all lines of a multi-line command in
the history file as one line, for easy re-editing

dotglob
include files whose names begin with . in path
expansions

execfail
keep non-interactive shells from exiting when exec
fails

expand_aliases
expand aliases as described in Aliases. Enabled
automatically in interactive shells

extglob
enable the extended pattern matching facilities (see
Patter ns)

histappend
append the current history to $HISTFILE upon exit,
instead of overwriting it

histreedit
if using readline and a history substitution fails, the
user can re-edit the line

histverify
if using readline, load the results of history
substitution into readline for further editing

hostcomplete
if using readline, attempt host completion on word
containing @

huponexit
send SIGHUP to all jobs when bash exits

interactive_comments
in interactive shells, a word starting with # star ts a
comment. Enabled by default

OPTIONS TO shopt

23



lithist
if cmdhist is also enabled, save multi-line
commands with newlines, not semi-colons

mailwarn
print a warning message if a file being checked for
mail was accessed since the last time it was
checked

nocaseglob
do a case-insensitive match when expanding
pathnames

nullglob
remove patterns that don’t match any file, instead
of leaving them unchanged in the command line

promptvars
do parameter expansion on the prompt variables
before printing them. Enabled by default

shift_verbose
print an error message when the shift count is
greater than the number of positional parameters

sourcepath
use $PATH to find shell files given to the . and
source commands. Enabled by default

OPTIONS TO shopt (continued)

# star t of comment; terminated by newline
| (pipe) connects two commands
; command separator
& run process in background; default stdin

from /dev/null if no job control
&& only run following command if previous

command completed successfully
| | only run following command if previous

command failed
´ enclose string to be taken literally
" enclose string to have variable, command

and arithmetic substitution only
$( ) in-line command substitution (new style)
` in-line command substitution (old style)
((...)) arithmetic evaluation, like let "..."
$((...)) in-line arithmetic evaluation
\ treat following character literally
\ newline line continuation

SPECIAL CHARACTERS

Jobs can be represented as follows:

jobid the job identifier for a job, where:
%% current job
%+ current job
%− previous job
%?str job uniquely identified by str
%n job number n
%pref job whose command line begins

with pref

Usually, a process ID may be used instead of a jobid.
Commands that take a jobid use the current job if no
jobid is supplied.

Traps on SIGCHLD execute whenever a job completes.

The commands fg and bg are only available on systems
that support job control. This includes Linux, BSD
systems, System V Release 4, and most UNIX systems.

JOB IDS AND JOB CONTROL

24



The readline library implements command line editing.
By default, it provides an emacs editing interface,
although a vi interface is available. readline is
initialized either from the file named by $INPUTRC (if
set), or from ˜/.inputrc. In that file, you can use
conditionals, define key bindings for macros and
functions, and set variables.

From the bash level, the bind command allows you to
add, remove and change macro and key bindings.
There are five input mode map names that control the
action taken for each input character. The map names
are emacs, emacs-standard, emacs-meta, emacs-ctlx,
vi, vi-command, and vi-insert. emacs is the same as
emacs-standard, and vi is the same as vi-command.

You choose which editor you prefer with set −o emacs
or set −o vi in your ˜/.bashrc file, or at runtime.

readline understands the character names DEL, ESC,
LFD, NEWLINE, RET, RETURN, RUBOUT, SPACE, SPC and
TAB.

READLINE

Directives in the .inputrc file provide conditional and
include facilities similar to the C preprocessor.

$include
include a file, e.g., a system-wide /etc/inputrc file

$if
star t a conditional, for terminal or application
specific settings. You can test the following:

application= test the application, e.g. bash or gdb
mode= test the editing mode, emacs or vi
term= test the terminal type

The use of application= is optional; e.g., $if Bash
$else

star t the ‘‘else’’ par t of a conditional
$endif

finish a conditional

READLINE DIRECTIVES

Keys bound to a macro place the macro text into the
input; keys bound to a function run the function.

You can use these escape sequences in bindings:

\a aler t (bell) \r carriage return
\b backspace \t horizontal tab (TAB)
\C− control prefix \v ver tical tab
\d delete (DEL) \\ backslash
\e escape (ESC) \" literal "
\f form feed \´ literal ´
\M− meta prefix \ddd octal value ddd
\n newline \xhhh hex value hhh

Macros and function bindings look like:

macro: key-seq :"text"
function: key-seq :function-name

Macros have quoted text on the right of the colon;
functions have function names. A key-seq is either a
single character or character name (such as Control−o),
or a quoted string of characters (single or double
quotes).

READLINE KEY BINDINGS

25



Variables control different aspects of readline’s
behavior. You set a variable with

set variable value

Unless otherwise noted, value should be either On or
Off. The descriptions below describe the effect when
the variable is On. Default values are shown in
parentheses.

bell-style (audible)
defines how readline should ring the bell:

audible ring the bell
none never ring the bell
visible flash the screen

comment-begin (#)
inser t this string for readline-insert-comment,
(bound to M-# in emacs mode and to # in vi mode)

completion-ignore-case (Off)
ignore case when doing completions

completion-query-items (100)
if the number of completion items is less than this
value, place them in the command line. Otherwise,
ask the user if they should be shown

convert-meta (On)
treat characters with the eighth bit set as the meta
version of the equivalent seven bit character

disable-completion (Off)
do not do completion

editing-mode (emacs)
set the initial editing mode. Possible values are
emacs or vi

enable-keypad (Off)
attempt to enable the application keypad. This may
be needed to make the arrow keys work

expand-tilde (Off)
attempt tilde expansion as part of word completion

input-meta (Off)
meta-flag (Off)

enable eight bit input. The two variable names are
synonyms

keymap (emacs)
set the current keymap. See Readline for a list of
allowed values. The editing-mode variable also
affects the keymap

mark-directories (On)
append a / to completed directory names

mark-modified-lines (Off)
place a * at the front of modified history lines

output-meta (Off)
print characters with the eighth bit set directly, not
as M-x

print-completions-horizontally (Off)
display completions horizontally, with the matches
sor ted alphabetically, instead of vertically down the
screen

show-all-if-ambiguous (Off)
immediately list words with multiple possible
completions, instead of ringing the bell

visible-stats (Off)
when listing possible completions, append a
character that denotes the file’s type

READLINE VARIABLES

More information about readline can be found on-line at
http://www.ssc.com/ssc/bash.

26




