
Advanced Bash−Scripting Guide

A complete guide to shell scripting

Mendel Cooper

Brindlesoft

thegrendel@theriver.com

06 January 2002

Revision History

Revision 0.1 14 June 2000 Revised by: mc

Initial release.

Revision 0.2 30 October 2000 Revised by: mc

Bugs fixed, plus much additional material and more example scripts.

Revision 0.3 12 February 2001 Revised by: mc

Another major update.

Revision 0.4 08 July 2001 Revised by: mc

More bugfixes, much more material, more scripts − a complete revision and expansion of the book.

Revision 0.5 03 September 2001 Revised by: mc

Major update. Bugfixes, material added, chapters and sections reorganized.

Revision 1.0 14 October 2001 Revised by: mc

Bugfixes, reorganization, material added. Stable release.

Revision 1.1 06 January 2002 Revised by: mc

Bugfixes, material and scripts added.

This tutorial assumes no previous knowledge of scripting or programming, but progresses rapidly toward an
intermediate/advanced level of instruction (...all the while sneaking in little snippets of UNIX wisdom and
lore). It serves as a textbook, a manual for self−study, and a reference and source of knowledge on shell
scripting techniques. The exercises and heavily−commented examples invite active reader participation,
under the premise that the only way to really learn scripting is to write scripts.

The latest update of this document, as an archived "tarball" including both the SGML source and rendered
HTML, may be downloaded from the author's home site. See the change log for a revision history.

http://personal.riverusers.com/~thegrendel/abs-guide-1.1.tar.gz
http://personal.riverusers.com/~thegrendel/Change.log

Dedication
For Anita, the source of all the magic

Table of Contents
Chapter 1. Why Shell Programming?...1

Chapter 2. Starting Off With a Sha−Bang...3
2.1. Invoking the script..5
2.2. Preliminary Exercises...6
Part 2. Basics..6

Chapter 3. Exit and Exit Status...7

Chapter 4. Special Characters...9

Chapter 5. Introduction to Variables and Parameters..23
5.1. Variable Substitution..23
5.2. Variable Assignment...25
5.3. Bash Variables Are Untyped..26
5.4. Special Variable Types...27

Chapter 6. Quoting...31

Chapter 7. Tests..37
7.1. Test Constructs...37
7.2. File test operators..42
7.3. Comparison operators (binary)...45
7.4. Nested if/then Condition Tests...50
7.5. Testing Your Knowledge of Tests..51

Chapter 8. Operations and Related Topics..52
8.1. Operators...52
8.2. Numerical Constants...58
Part 3. Beyond the Basics..58

Chapter 9. Variables Revisited..60
9.1. Internal Variables..60
9.2. Manipulating Strings...75

9.2.1. Manipulating strings using awk..79
9.2.2. Further Discussion..80

9.3. Parameter Substitution..80
9.4. Typing variables: declare or typeset..88
9.5. Indirect References to Variables...90
9.6. $RANDOM: generate random integer..92
9.7. The Double Parentheses Construct...96

Chapter 10. Loops and Branches..98
10.1. Loops..98
10.2. Nested Loops..108
10.3. Loop Control...108
10.4. Testing and Branching..111

Advanced Bash−Scripting Guide

i

Table of Contents
Chapter 11. Internal Commands and Builtins...117

11.1. Job Control Commands..132

Chapter 12. External Filters, Programs and Commands...136
12.1. Basic Commands..136
12.2. Complex Commands...139
12.3. Time / Date Commands..145
12.4. Text Processing Commands..147
12.5. File and Archiving Commands...166
12.6. Communications Commands..174
12.7. Terminal Control Commands...177
12.8. Math Commands...178
12.9. Miscellaneous Commands..183

Chapter 13. System and Administrative Commands..190

Chapter 14. Command Substitution...213

Chapter 15. Arithmetic Expansion..217

Chapter 16. I/O Redirection...218
16.1. Using exec...220
16.2. Redirecting Code Blocks..221
16.3. Applications..225

Chapter 17. Here Documents...227

Chapter 18. Recess Time..232
Part 4. Advanced Topics..232

Chapter 19. Regular Expressions..234
19.1. A Brief Introduction to Regular Expressions..234
19.2. Globbing...236

Chapter 20. Subshells...238

Chapter 21. Restricted Shells...241

Chapter 22. Process Substitution...243

Chapter 23. Functions..245
23.1. Complex Functions and Function Complexities...247
23.2. Local Variables...254

23.2.1. Local variables make recursion possible..255

Chapter 24. Aliases...257

Chapter 25. List Constructs...260

Advanced Bash−Scripting Guide

ii

Table of Contents
Chapter 26. Arrays...263

Chapter 27. Files...274

Chapter 28. /dev and /proc...275
28.1. /dev..275
28.2. /proc..275

Chapter 29. Of Zeros and Nulls...280

Chapter 30. Debugging...283

Chapter 31. Options..289

Chapter 32. Gotchas...292

Chapter 33. Scripting With Style..296
33.1. Unofficial Shell Scripting Stylesheet..296

Chapter 34. Miscellany...299
34.1. Interactive and non−interactive shells and scripts..299
34.2. Shell Wrappers..300
34.3. Tests and Comparisons: Alternatives..303
34.4. Optimizations..304
34.5. Assorted Tips..304
34.6. Oddities...307
34.7. Portability Issues...308
34.8. Shell Scripting Under Windows...308

Chapter 35. Bash, version 2...309

Chapter 36. Endnotes...313
36.1. Author's Note..313
36.2. About the Author..313
36.3. Tools Used to Produce This Book..313

36.3.1. Hardware...313
36.3.2. Software and Printware...313

36.4. Credits...314
Bibliography..315
Appendix A. Contributed Scripts...319
Appendix B. A Sed and Awk Micro−Primer...337
B.1. Sed..337
B.2. Awk..340
Appendix C. Exit Codes With Special Meanings..341
Appendix D. A Detailed Introduction to I/O and I/O Redirection..342
Appendix E. Localization..343
Appendix F. History Commands...345
Appendix G. A Sample .bashrc File..346

Advanced Bash−Scripting Guide

iii

Table of Contents
Appendix H. Converting DOS Batch Files to Shell Scripts..355
Appendix I. Exercises..359
Appendix J. Copyright...361

Advanced Bash−Scripting Guide

iv

Chapter 1. Why Shell Programming?
A working knowledge of shell scripting is essential to everyone wishing to become reasonably adept at
system administration, even if they do not anticipate ever having to actually write a script. Consider that as a
Linux machine boots up, it executes the shell scripts in /etc/rc.d to restore the system configuration and
set up services. A detailed understanding of these startup scripts is important for analyzing the behavior of a
system, and possibly modifying it.

Writing shell scripts is not hard to learn, since the scripts can be built in bite−sized sections and there is only
a fairly small set of shell−specific operators and options [1] to learn. The syntax is simple and
straightforward, similar to that of invoking and chaining together utilities at the command line, and there are
only a few "rules" to learn. Most short scripts work right the first time, and debugging even the longer ones is
straightforward.

A shell script is a "quick and dirty" method of prototyping a complex application. Getting even a limited
subset of the functionality to work in a shell script, even if slowly, is often a useful first stage in project
development. This way, the structure of the application can be tested and played with, and the major pitfalls
found before proceeding to the final coding in C, C++, Java, or Perl.

Shell scripting hearkens back to the classical UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more
esthetically pleasing approach to problem solving than using one of the new generation of high powered
all−in−one languages, such as Perl, which attempt to be all things to all people, but at the cost of forcing you
to alter your thinking processes to fit the tool.

When not to use shell scripts

resource−intensive tasks, especially where speed is a factor (sorting, hashing, etc.) •
procedures involving heavy−duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

•

cross−platform portability required (use C instead) •
complex applications, where structured programming is a necessity (need typechecking of variables,
function prototypes, etc.)

•

mission−critical applications upon which you are betting the ranch, or the future of the company •
situations where security is important, where you need to guarantee the integrity of your system and
protect against intrusion, cracking, and vandalism

•

project consists of subcomponents with interlocking dependencies •
extensive file operations required (Bash is limited to serial file access, and that only in a particularly
clumsy and inefficient line−by−line fashion)

•

need multi−dimensional arrays •
need data structures, such as linked lists or trees •
need to generate or manipulate graphics or GUIs •
need direct access to system hardware •
need port or socket I/O •
need to use libraries or interface with legacy code •
proprietary, closed−source applications (shell scripts are necessarily Open Source) •

If any of the above applies, consider a more powerful scripting language, perhaps Perl, Tcl, Python, or
possibly a high−level compiled language such as C, C++, or Java. Even then, prototyping the application as a
shell script might still be a useful development step.

Chapter 1. Why Shell Programming? 1

We will be using Bash, an acronym for "Bourne−Again Shell" and a pun on Stephen Bourne's now classic
Bourne Shell. Bash has become a de facto standard for shell scripting on all flavors of UNIX. Most of the
principles dealt with in this book apply equally well to scripting with other shells, such as the Korn Shell,
from which Bash derives some of its features, [2] and the C Shell and its variants. (Note that C Shell
programming is not recommended due to certain inherent problems, as pointed out in a news group
posting by Tom Christiansen in October of 1993).

The following is a tutorial in shell scripting. It relies heavily on examples to illustrate features of the shell. As
far as possible, the example scripts have been tested, and some of them may actually be useful in real life.
The reader should use the actual examples in the the source archive (something−or−other.sh),
[3] give them execute permission (chmod u+rx scriptname), then run them to see what happens.
Should the source archive not be available, then cut−and−paste from the HTML, pdf, or text rendered
versions. Be aware that some of the scripts below introduce features before they are explained, and this may
require the reader to temporarily skip ahead for enlightenment.

Unless otherwise noted, the book author wrote the example scripts that follow.

Advanced Bash−Scripting Guide

Chapter 1. Why Shell Programming? 2

http://www.etext.org/Quartz/computer/unix/csh.harmful.gz
http://www.etext.org/Quartz/computer/unix/csh.harmful.gz

Chapter 2. Starting Off With a Sha−Bang
In the simplest case, a script is nothing more than a list of system commands stored in a file. At the very least,
this saves the effort of retyping that particular sequence of commands each time it is invoked.

Example 2−1. cleanup: A script to clean up the log files in /var/log

cleanup
Run as root, of course.

cd /var/log
cat /dev/null > messages
cat /dev/null > wtmp
echo "Logs cleaned up."

There is nothing unusual here, just a set of commands that could just as easily be invoked one by one from
the command line on the console or in an xterm. The advantages of placing the commands in a script go
beyond not having to retype them time and again. The script can easily be modified, customized, or
generalized for a particular application.

Example 2−2. cleanup: An enhanced and generalized version of above script.

#!/bin/bash
cleanup, version 2
Run as root, of course.

LOG_DIR=/var/log
ROOT_UID=0 # Only users with $UID 0 have root privileges.
LINES=50 # Default number of lines saved.
E_XCD=66 # Can't change directory?
E_NOTROOT=67 # Non−root exit error.

if ["$UID" −ne "$ROOT_UID"]
then
 echo "Must be root to run this script."
 exit $E_NOTROOT
fi

if [−n "$1"]
Test if command line argument present (non−empty).
then
 lines=$1
else
 lines=$LINES # Default, if not specified on command line.
fi

Stephane Chazelas suggests the following,
#+ as a better way of checking command line arguments,
#+ but this is still a bit advanced for this stage of the tutorial.
#
E_WRONGARGS=65 # Non−numerical argument (bad arg format)
#
case "$1" in

Chapter 2. Starting Off With a Sha−Bang 3

"") lines=50;;
[!0−9]) echo "Usage: `basename $0` file−to−cleanup"; exit $E_WRONGARGS;;
*) lines=$1;;
esac
#
#* Skip ahead to "Loops" to understand this.

cd $LOG_DIR

if [`pwd` != "$LOG_DIR"] # or if ["$PWD" != "LOG_DIR"]
 # Not in /var/log?
then
 echo "Can't change to $LOG_DIR."
 exit $E_XCD
fi # Doublecheck if in right directory, before messing with log file.

far better is:
−−−
cd /var/log || {
echo "Cannot change to necessary directory." >&2
exit $E_XCD;
}

tail −$lines messages > mesg.temp # Saves last section of message log file.
mv mesg.temp messages # Becomes new log directory.

cat /dev/null > messages
#* No longer needed, as the above method is safer.

cat /dev/null > wtmp # > wtemp has the same effect.
echo "Logs cleaned up."

exit 0
A zero return value from the script upon exit
#+ indicates success to the shell.

Since you may not wish to wipe out the entire system log, this variant of the first script keeps the last section
of the message log intact. You will constantly discover ways of refining previously written scripts for
increased effectiveness.

The sha−bang (#!) at the head of a script tells your system that this file is a set of commands to be fed to the
command interpreter indicated. The #! is actually a two−byte [4] "magic number", a special marker that
designates a file type, or in this case an executable shell script (see man magic for more details on this
fascinating topic). Immediately following the sha−bang is a path name. This is the path to the program that
interprets the commands in the script, whether it be a shell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (line 1 of the script),
ignoring comments. [5]

#!/bin/sh
#!/bin/bash
#!/usr/bin/perl
#!/usr/bin/tcl
#!/bin/sed −f
#!/usr/awk −f

Advanced Bash−Scripting Guide

Chapter 2. Starting Off With a Sha−Bang 4

Each of the above script header lines calls a different command interpreter, be it /bin/sh, the default shell
(bash in a Linux system) or otherwise. [6] Using #!/bin/sh, the default Bourne Shell in most commercial
variants of UNIX, makes the script portable to non−Linux machines, though you may have to sacrifice a few
Bash−specific features (the script will conform to the POSIX [7] sh standard).

Note that the path given at the "sha−bang" must be correct, otherwise an error message, usually "Command
not found" will be the only result of running the script.

#! can be omitted if the script consists only of a set of generic system commands, using no internal shell
directives. Example 2, above, requires the initial #!, since the variable assignment line, lines=50, uses a
shell−specific construct. Note that #!/bin/sh invokes the default shell interpreter, which defaults to
/bin/bash on a Linux machine.

This tutorial encourages a modular approach to constructing a script. Make
note of and collect "boilerplate" code snippets that might be useful in future
scripts. Eventually you can build a quite extensive library of nifty routines.
As an example, the following script prolog tests whether the script has been
invoked with the correct number of parameters.

if [$# −ne Number_of_expected args]
then
 echo "Usage: `basename $0` whatever"
 exit $WRONG_ARGS
fi

2.1. Invoking the script

Having written the script, you can invoke it by sh scriptname, [8] or alternately bash scriptname.
(Not recommended is using sh <scriptname, since this effectively disables reading from stdin within
the script.) Much more convenient is to make the script itself directly executable with a chmod.

Either:

chmod 555 scriptname (gives everyone read/execute permission) [9]

or

chmod +rx scriptname (gives everyone read/execute permission)

chmod u+rx scriptname (gives only the script owner read/execute permission)

Having made the script executable, you may now test it by ./scriptname. [10] If it begins with a
"sha−bang" line, invoking the script calls the correct command interpreter to run it.

As a final step, after testing and debugging, you would likely want to move it to /usr/local/bin (as
root, of course), to make the script available to yourself and all other users as a system−wide executable. The
script could then be invoked by simply typing scriptname [ENTER] from the command line.

Advanced Bash−Scripting Guide

2.1. Invoking the script 5

2.2. Preliminary Exercises

System administrators often write scripts to automate common tasks. Give instances where such
scripts would be useful.

1.

Write a script that upon invocation shows the time and date, lists all logged−in users, and gives the
system uptime. The script then saves this information to a logfile.

2.

Part 2. Basics

Table of Contents
3. Exit and Exit Status
4. Special Characters
5. Introduction to Variables and Parameters

5.1. Variable Substitution
5.2. Variable Assignment
5.3. Bash Variables Are Untyped
5.4. Special Variable Types

6. Quoting
7. Tests

7.1. Test Constructs
7.2. File test operators
7.3. Comparison operators (binary)
7.4. Nested if/then Condition Tests
7.5. Testing Your Knowledge of Tests

8. Operations and Related Topics
8.1. Operators
8.2. Numerical Constants

Advanced Bash−Scripting Guide

2.2. Preliminary Exercises 6

Chapter 3. Exit and Exit Status

...there are dark corners in the Bourne shell, and
people use all of them.

Chet Ramey

The exit command may be used to terminate a script, just as in a C program. It can also return a value, which
is available to the script's parent process.

Every command returns an exit status (sometimes referred to as a return status). A successful command
returns a 0, while an unsuccessful one returns a non−zero value that usually may be interpreted as an error
code. Well−behaved UNIX commands, programs, and utilities return a 0 exit code upon successful
completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed in
the function or script determines the exit status. Within a script, an exit nnn command may be used to
deliver an nnn exit status to the shell (nnn must be a decimal number in the 0 − 255 range).

When a script ends with an exit that has no parameter, the
exit status of the script is the exit status of the last
command executed in the script (not counting the exit).

$? reads the exit status of the last command executed. After a function returns, $? gives the exit status of the
last command executed in the function. This is Bash's way of giving functions a "return value". After a script
terminates, a $? from the command line gives the exit status of the script, that is, the last command executed
in the script, which is, by convention, 0 on success or an integer in the range 1 − 255 on error.

Example 3−1. exit / exit status

#!/bin/bash

echo hello
echo $? # Exit status 0 returned because command successful.

lskdf # Unrecognized command.
echo $? # Non−zero exit status returned.

echo

exit 113 # Will return 113 to shell.
To verify this, type "echo $?" after script terminates.

By convention, an 'exit 0' indicates success,
while a non−zero exit value means an error or anomalous condition.

$? is especially useful for testing the result of a command in a script (see Example 12−8 and Example 12−13).

Chapter 3. Exit and Exit Status 7

The !, the logical "not" qualifier, reverses the outcome of a test or command, and
this affects its exit status.

Example 3−2. Negating a condition using !

true # the "true" builtin.
echo "exit status of \"true\" = $?" # 0

! true
echo "exit status of \"! true\" = $?" # 1
Note that the "!" needs a space.
!true leads to a "command not found" error

Thanks, S.C.

Certain exit status codes have reserved meanings and
should not be user−specified in a script.

Advanced Bash−Scripting Guide

Chapter 3. Exit and Exit Status 8

Chapter 4. Special Characters
Special Characters Found In Scripts and Elsewhere

#

Comments. Lines beginning with a # (with the exception of #!) are comments.

This line is a comment.

Comments may also occur at the end of a command.

echo "A comment will follow." # Comment here.

Comments may also follow whitespace at the beginning of a line.

 # A tab precedes this comment.

A command may not follow a comment on the
same line. There is no method of terminating the
comment, in order for "live code" to begin on
the same line. Use a new line for the next
command.

Of course, an escaped # in an echo statement does not begin a comment.
Likewise, a # appears in certain parameter substitution constructs and in
numerical constant expressions.

echo "The # here does not begin a comment."
echo 'The # here does not begin a comment.'
echo The \# here does not begin a comment.
echo The # here begins a comment.

echo ${PATH#*:} # Parameter substitution, not a comment.
echo $((2#101011)) # Base conversion, not a comment.

Thanks, S.C.

The standard quoting and escape characters (" ' \) escape the #.

Certain pattern matching operations also use the #.

;

Command separator. [Semicolon] Permits putting two or more commands on the same line.

echo hello; echo there

Note that the ";" sometimes needs to be escaped.

Chapter 4. Special Characters 9

;;

Terminator in a case option. [Double semicolon]

case "$variable" in
abc) echo "$variable = abc" ;;
xyz) echo "$variable = xyz" ;;
esac

.

"dot" command. [period] Equivalent to source (see Example 11−14). This is a bash builtin.

In a different context, as part of a regular expression, a "dot" matches a single character.

In yet another context, a dot is the filename prefix of a "hidden" file, a file that an ls will not normally
show.

bash$ touch .hidden−file
bash$ ls −l
total 10
 −rw−r−−r−− 1 bozo 4034 Jul 18 22:04 data1.addressbook
 −rw−r−−r−− 1 bozo 4602 May 25 13:58 data1.addressbook.bak
 −rw−r−−r−− 1 bozo 877 Dec 17 2000 employment.addressbook

bash$ ls −al
total 14
 drwxrwxr−x 2 bozo bozo 1024 Aug 29 20:54 ./
 drwx−−−−−− 52 bozo bozo 3072 Aug 29 20:51 ../
 −rw−r−−r−− 1 bozo bozo 4034 Jul 18 22:04 data1.addressbook
 −rw−r−−r−− 1 bozo bozo 4602 May 25 13:58 data1.addressbook.bak
 −rw−r−−r−− 1 bozo bozo 877 Dec 17 2000 employment.addressbook
 −rw−rw−r−− 1 bozo bozo 0 Aug 29 20:54 .hidden−file

"

partial quoting. [double quote] "STRING" preserves (from interpretation) most of the special
characters within STRING. See also Chapter 6.

'

full quoting. [single quote] 'STRING' preserves all special characters within STRING. This is a
stronger form of quoting than using ". See also Chapter 6.

,

comma operator. The comma operator links together a series of arithmetic operations. All are
evaluated, but only the last one is returned.

let "t2 = ((a = 9, 15 / 3))" # Set "a" and calculate "t2".

\

escape. [backslash] \X "escapes" the character X. This has the effect of "quoting" X, equivalent to
'X'. The \ may be used to quote " and ', so they are expressed literally.

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 10

See Chapter 6 for an in−depth explanation of escaped characters.

/

Filename path separator. [forward slash] Separates the components of a filename (as in
/home/bozo/projects/Makefile).

This is also the division arithmetic operator.

`

command substitution. [backticks] `command` makes available the output of command for setting a
variable. This is also known as backticks or backquotes.

:

null command. [colon] This is the shell equivalent of a "NOP" (no op, a do−nothing operation). It
may be considered a synonym for the shell builtin true. The ":" command is a Bash builtin, and its
exit status is "true" (0).

:
echo $? # 0

Endless loop:

while :
do
 operation−1
 operation−2
 ...
 operation−n
done

Same as:
while true
do
...
done

Placeholder in if/then test:

if condition
then : # Do nothing and branch ahead
else
 take−some−action
fi

Provide a placeholder where a binary operation is expected, see Example 8−1 and default parameters.

: ${username=`whoami`}
${username=`whoami`} without the leading : gives an error
unless "username" is a command or builtin...

Provide a placeholder where a command is expected in a here document. See Example 17−8.

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 11

Evaluate string of variables using parameter substitution (as in Example 9−11).

: ${HOSTNAME?} ${USER?} ${MAIL?}
#Prints error message if one or more of essential environmental variables not set.

Variable expansion / substring replacement.

In combination with the > redirection operator, truncates a file to zero length, without changing its
permissions. If the file did not previously exist, creates it.

: > data.xxx # File "data.xxx" now empty.

Same effect as cat /dev/null >data.xxx
However, this does not fork a new process, since ":" is a builtin.

See also Example 12−11.

In combination with the >> redirection operator, updates a file access/modification time (: >>
new_file). If the file did not previously exist, creates it. This is equivalent to touch.

This applies to regular files, not pipes,
symlinks, and certain special files.

May be used to begin a comment line, although this is not recommended. Using # for a comment
turns off error checking for the remainder of that line, so almost anything may be appear in a
comment. However, this is not the case with :.

: This is a comment that generates an error, (if [$x −eq 3]).

The ":" also serves as a field separator, in /etc/passwd, and in the $PATH variable.

bash$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/sbin:/usr/sbin:/usr/games

!

reverse (or negate) the sense of a test or exit status. The ! operator inverts the exit status of the
command to which it is applied (see Example 3−2). It also inverts the meaning of a test operator.
This can, for example, change the sense of "equal" (=) to "not−equal" (!=). The ! operator is a Bash
keyword.

In a different context, the ! also appears in indirect variable references.

*

wild card. [asterisk] The * character serves as a "wild card" for filename expansion in globbing, as
well as representing any number (or zero) characters in a regular expression.

A double asterisk, **, is the exponentiation operator.

?

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 12

wild card (single character). [question mark] The ? character serves as a single−character "wild
card" for filename expansion in globbing, as well as representing one character in an extended
regular expression.

Within a double parentheses construct, the ? serves as a C−style trinary operator. See Example 9−24.

$

Variable substitution.

var1=5
var2=23skidoo

echo $var1 # 5
echo $var2 # 23skidoo

In a regular expression, a $ matches the end of a line.

${}

Parameter substitution.

$*, $@

positional parameters.

()

command group.

(a=hello; echo $a)

A listing of commands within parentheses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to the rest
of the script. The parent process, the script, cannot read variables created
in the child process, the subshell.

a=123
(a=321;)

echo "a = $a" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(element1 element2 element3)

{xxx,yyy,zzz,...}

Brace expansion.

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 13

grep Linux file*.{txt,htm*}
Finds all instances of the work "Linux"
in the files "fileA.txt", "file2.txt", "fileR.html", "file−87.htm", etc.

A command may act upon a comma−separated list of file specs within braces. [11] Filename
expansion (globbing) applies to the file specs between the braces.

No spaces allowed within the braces unless the spaces
are quoted or escaped.

echo {file1,file2}\ :{\ A," B",' C'}

file1 : A file1 : B file1 : C file2
: A file2 : B file2 : C

{}

Block of code. [curly brackets] Also referred to as an "inline group", this construct, in effect, creates
an anonymous function. However, unlike a function, the variables in a code block remain visible to
the remainder of the script.

bash$ { local a; a=123; }
bash: local: can only be used in a function

a=123
{ a=321; }
echo "a = $a" # a = 321 (value inside code block)

Thanks, S.C.

The code block enclosed in braces may have I/O redirected to and from it.

Example 4−1. Code blocks and I/O redirection

#!/bin/bash
Reading lines in /etc/fstab.

File=/etc/fstab

{
read line1
read line2
} < $File

echo "First line in $File is:"
echo "$line1"
echo
echo "Second line in $File is:"
echo "$line2"

exit 0

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 14

Example 4−2. Saving the results of a code block to a file

#!/bin/bash
rpm−check.sh

Queries an rpm file for description, listing, and whether it can be installed.
Saves output to a file.

This script illustrates using a code block.

SUCCESS=0
E_NOARGS=65

if [−z "$1"]
then
 echo "Usage: `basename $0` rpm−file"
 exit $E_NOARGS
fi

{
 echo
 echo "Archive Description:"
 rpm −qpi $1 # Query description.
 echo
 echo "Archive Listing:"
 rpm −qpl $1 # Query listing.
 echo
 rpm −i −−test $1 # Query whether rpm file can be installed.
 if ["$?" −eq $SUCCESS]
 then
 echo "$1 can be installed."
 else
 echo "$1 cannot be installed."
 fi
 echo
} > "$1.test" # Redirects output of everything in block to file.

echo "Results of rpm test in file $1.test"

See rpm man page for explanation of options.

exit 0

Unlike a command group within (parentheses), as
above, a code block enclosed by {braces} will
not normally launch a subshell. [12]

{} \;

pathname. Mostly used in find constructs. This is not a shell builtin.

The ";" ends the −exec option of a
find command sequence. It needs to be escaped to
protect it from interpretation by the shell.

[]

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 15

test.

Test expression between []. Note that [is part of the shell builtin test (and a synonym for it), not a
link to the external command /usr/bin/test.

[[]]

test.

Test expression between [[]] (shell keyword).

See the discussion on the [[...]] construct.

(())

integer expansion.

Expand and evaluate integer expression between (()).

See the discussion on the ((...)) construct.

> >& >> <

redirection.

scriptname >filename redirects the output of scriptname to file filename. Overwrite
filename if it already exists.

command >&2 redirects output of command to stderr.

scriptname >>filename appends the output of scriptname to file filename. If
filename does not already exist, it will be created.

process substitution.

(command)>

<(command)

In a different context, the "<" and ">" characters act as string comparison operators.

In yet another context, the "<" and ">" characters act as integer comparison operators. See also
Example 12−6.

<<

redirection used in a here document.

|

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 16

pipe. Passes the output of previous command to the input of the next one, or to the shell. This is a
method of chaining commands together.

echo ls −l | sh
Passes the output of "echo ls −l" to the shell,
#+ with the same result as a simple "ls −l".

cat *.lst | sort | uniq
Merges and sorts all ".lst" files, then deletes duplicate lines.

A pipe, as a classic method of interprocess communication, sends the stdout of one process to
the stdin of another. In a typical case, a command, such as cat or echo, pipes a stream of data to
a filter for processing.

cat $filename | grep $search_word

The output of a command or commands may be piped to a script.

#!/bin/bash
uppercase.sh : Changes input to uppercase.

tr 'a−z' 'A−Z'
Letter ranges must be quoted
#+ to prevent filename generation from single−letter filenames.

exit 0

Now, let us pipe the output of ls −l to this script.
bash$ ls −l | ./uppercase.sh
−RW−RW−R−− 1 BOZO BOZO 109 APR 7 19:49 1.TXT
 −RW−RW−R−− 1 BOZO BOZO 109 APR 14 16:48 2.TXT
 −RW−R−−R−− 1 BOZO BOZO 725 APR 20 20:56 DATA−FILE

The stdout of each process in a pipe must be read as the stdin of the next.
If this is not the case, the data stream will block, and the pipe will not behave
as expected.

cat file1 file2 | ls −l | sort
The output from "cat file1 file2" disappears.

A pipe runs as a child process, and therefore cannot alter script variables.

variable="initial_value"
echo "new_value" | read variable
echo "variable = $variable" # variable = initial_value

If one of the commands in the pipe aborts, this prematurely terminates
execution of the pipe. Called a broken pipe, this condition sends a
SIGPIPE signal.

>|

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 17

force redirection (even if the noclobber option is set). This will forcibly overwrite an existing file.

&

Run job in background. A command followed by an & will run in the background.

bash$ sleep 10 &
[1] 850
[1]+ Done sleep 10

A command run in the background within a
script may cause the script to hang, waiting for a
keystroke. Fortunately, there is a remedy for this.

−

redirection from/to stdin or stdout. [dash]

(cd /source/directory && tar cf − .) | (cd /dest/directory && tar xpvf −)
Move entire file tree from one directory to another
[courtesy Alan Cox <a.cox@swansea.ac.uk>, with a minor change]

1) cd /source/directory Source directory, where the files to be moved are.
2) && "And−list": if the 'cd' operation successful, then execute the next command.
3) tar cf − . The 'c' option 'tar' archiving command creates a new archive,
the 'f' (file) option, followed by '−' designates the target file as stdout,
and do it in current directory tree ('.').
4) | Piped to...
5) (...) a subshell
6) cd /dest/directory Change to the destination directory.
7) && "And−list", as above
8) tar xpvf − Unarchive ('x'), preserve ownership and file permissions ('p'),
and send verbose messages to stdout ('v'),
reading data from stdin ('f' followed by '−').
#
Note that 'x' is a command, and 'p', 'v', 'f' are options.
Whew!

More elegant than, but equivalent to:
cd source−directory
tar cf − . | (cd ../target−directory; tar xzf −)
#
cp −a /source/directory /dest also has same effect.

bunzip2 linux−2.4.3.tar.bz2 | tar xvf −
−−uncompress tar file−− | −−then pass it to "tar"−−
If "tar" has not been patched to handle "bunzip2",
this needs to be done in two discrete steps, using a pipe.
The purpose of the exercise is to unarchive "bzipped" kernel source.

Note that in this context the "−" is not itself a Bash operator, but rather an option recognized by
certain UNIX utilities that write to stdout, such as tar, cat, etc.

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 18

Where a filename is expected, − redirects output to stdout (sometimes seen with tar cf), or
accepts input from stdin, rather than from a file. This is a method of using a file−oriented utility as
a filter in a pipe.

bash$ file
Usage: file [−bciknvzL] [−f namefile] [−m magicfiles] file...

By itself on the command line, file fails with an error message.

bash$ file −
#!/bin/bash
standard input: Bourne−Again shell script text executable

This time, it accepts input from stdin and filters it.

The − can be used to pipe stdout to other commands. This permits such stunts as prepending lines
to a file.

Using diff to compare a file with a section of another:

grep bash file1 | diff file2 −

Finally, a real−world example using − with tar.

Example 4−3. Backup of all files changed in last day

#!/bin/bash

Backs up all files in current directory modified within last 24 hours
in a "tarball" (tarred and gzipped file).

NOARGS=0
E_BADARGS=65

if [$# = $NOARGS]
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

tar cvf − `find . −mtime −1 −type f −print` > $1.tar
gzip $1.tar

Stephane Chazelas points out that the above code will fail
if there are too many files found
or if any filenames contain blank characters.

He suggests the following alternatives:
−−−
find . −mtime −1 −type f −print0 | xargs −0 tar rvf "$1.tar"
using the GNU version of "find".

find . −mtime −1 −type f −exec tar rvf "$1.tar" '{}' \;
portable to other UNIX flavors, but much slower.

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 19

exit 0

Filenames beginning with − may cause problems when coupled with the
− redirection operator. A script should check for this and pass such
filenames as ./−FILENAME or $PWD/−FILENAME.

If the value of a variable begins with a −, this may likewise create
problems.

var="−n"
echo $var
Has the effect of "echo −n", and outputs nothing.

−

previous working directory. [dash] cd − changes to previous working directory. This uses the
$OLDPWD environmental variable.

This is not to be confused with the "−" redirection
operator just discussed. The interpretation of the
"−" depends on the context in which it appears.

−

Minus. Minus sign in an arithmetic operation.

=

Equals. Assignment operator

a=28
echo $a # 28

In a different context, the "=" is a string comparison operator.

+

Plus. Addition arithmetic operator.

In a different context, the + is a Regular Expression operator.

%

modulo. Modulo (remainder of a division) arithmetic operation.

In a different context, the % is a pattern matching operator.

~

home directory. [tilde] This corresponds to the $HOME internal variable. ~bozo is bozo's home

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 20

directory, and ls ~bozo lists the contents of it. ~/ is the current user's home directory, and ls ~/ lists
the contents of it.

bash$ echo ~bozo
/home/bozo

bash$ echo ~
/home/bozo

bash$ echo ~/
/home/bozo/

bash$ echo ~:
/home/bozo:

bash$ echo ~nonexistent−user
~nonexistent−user

~+

current working directory. This corresponds to the $PWD internal variable.

~−

previous working directory. This corresponds to the $OLDPWD internal variable.

Control Characters

change the behavior of the terminal or text display. A control character is a CONTROL +
key combination.

Ctl−C♦

Terminate a foreground job.

♦
Ctl−D

Log out from a shell (similar to exit).

"EOF" (end of file). This also terminates input from stdin.

Ctl−G♦

"BEL" (beep).

Ctl−H♦

Backspace.

Ctl−J♦

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 21

Carriage return.

Ctl−L♦

Formfeed (clear the terminal screen). This has the same effect as the clear command.

Ctl−M♦

Newline.

Ctl−U♦

Erase a line of input.

Ctl−Z♦

Pause a foreground job.

Whitespace

functions as a separator, separating commands or variables. Whitespace consists of either spaces,
tabs, blank lines, or any combination thereof. In some contexts, such as variable assignment,
whitespace is not permitted, and results in a syntax error.

Blank lines have no effect on the action of a script, and are therefore useful for visually separating
functional sections.

$IFS, the special variable separating fields of input to certain commands, defaults to whitespace.

Advanced Bash−Scripting Guide

Chapter 4. Special Characters 22

Chapter 5. Introduction to Variables and
Parameters
Variables are at the heart of every programming and scripting language. They appear in arithmetic operations
and manipulation of quantities, string parsing, and are indispensable for working in the abstract with symbols
− tokens that represent something else. A variable is nothing more than a location or set of locations in
computer memory holding an item of data.

5.1. Variable Substitution

The name of a variable is a placeholder for its value, the data it holds. Referencing its value is called variable
substitution.

$

Let us carefully distinguish between the name of a variable and its value. If variable1 is the name
of a variable, then $variable1 is a reference to its value, the data item it contains. The only time a
variable appears "naked", without the $ prefix, is when declared or assigned, when unset, when
exported, or in the special case of a variable representing a signal (see Example 30−4). Assignment
may be with an = (as in var1=27), in a read statement, and at the head of a loop (for var2 in 1 2 3).

Enclosing a referenced value in double quotes (" ") does not interfere with variable substitution. This
is called partial quoting, sometimes referred to as "weak quoting". Using single quotes (' ') causes the
variable name to be used literally, and no substitution will take place. This is full quoting, sometimes
referred to as "strong quoting". See Chapter 6 for a detailed discussion.

Note that $variable is actually a simplified alternate form of ${variable}. In contexts where
the $variable syntax causes an error, the longer form may work (see Section 9.3, below).

Example 5−1. Variable assignment and substitution

#!/bin/bash

Variables: assignment and substitution

a=375
hello=$a

#−−−
No space permitted on either side of = sign when initializing variables.

If "VARIABLE =value",
#+ script tries to run "VARIABLE" command with one argument, "=value".

If "VARIABLE= value",
#+ script tries to run "value" command with
#+ the environmental variable "VARIABLE" set to "".
#−−−

Chapter 5. Introduction to Variables and Parameters 23

echo hello # Not a variable reference, just the string "hello".

echo $hello
echo ${hello} #Identical to above.

echo "$hello"
echo "${hello}"

echo

hello="A B C D"
echo $hello
echo "$hello"
Now, echo $hello and echo "$hello" give different results.
Quoting a variable preserves whitespace.

echo

echo '$hello'
Variable referencing disabled by single quotes,
#+ which causes the "$" to be interpreted literally.

Notice the effect of different types of quoting.

hello= # Setting it to a null value.
echo "\$hello (null value) = $hello"
Note that setting a variable to a null value is not the same as
#+ unsetting it, although the end result is the same (see below).

−−

It is permissible to set multiple variables on the same line,
#+ if separated by white space.
Caution, this may reduce legibility, and may not be portable.

var1=variable1 var2=variable2 var3=variable3
echo
echo "var1=$var1 var2=$var2 var3=$var3"

May cause problems with older versions of "sh".

−−

echo; echo

numbers="one two three"
other_numbers="1 2 3"
If whitespace within a variable, then quotes necessary.
echo "numbers = $numbers"
echo "other_numbers = $other_numbers"
echo

echo "uninitialized_variable = $uninitialized_variable"
Uninitialized variable has null value (no value at all).
uninitialized_variable= # Declaring, but not initializing it
 #+ (same as setting it to a null value, as above).
echo "uninitialized_variable = $uninitialized_variable"
 # It still has a null value.

uninitialized_variable=23 # Set it.
unset uninitialized_variable # Unset it.

Advanced Bash−Scripting Guide

Chapter 5. Introduction to Variables and Parameters 24

echo "uninitialized_variable = $uninitialized_variable"
 # It still has a null value.

echo

exit 0

An uninitialized variable has a "null" value − no
assigned value at all (not zero!). Using a variable
before assigning a value to it will inevitably
cause problems.

5.2. Variable Assignment

=

the assignment operator (no space before & after)

Do not confuse this with = and −eq, which test,
rather than assign!

Note that = can be either an assignment or a test
operator, depending on context.

Example 5−2. Plain Variable Assignment

#!/bin/bash

echo

When is a variable "naked", i.e., lacking the '$' in front?
When it is being assigned, rather than referenced.

Assignment
a=879
echo "The value of \"a\" is $a"

Assignment using 'let'
let a=16+5
echo "The value of \"a\" is now $a"

echo

In a 'for' loop (really, a type of disguised assignment)
echo −n "The values of \"a\" in the loop are "
for a in 7 8 9 11
do
 echo −n "$a "
done

echo
echo

Advanced Bash−Scripting Guide

5.2. Variable Assignment 25

In a 'read' statement (also a type of assignment)
echo −n "Enter \"a\" "
read a
echo "The value of \"a\" is now $a"

echo

exit 0

Example 5−3. Variable Assignment, plain and fancy

#!/bin/bash

a=23 # Simple case
echo $a
b=$a
echo $b

Now, getting a little bit fancier...

a=`echo Hello!` # Assigns result of 'echo' command to 'a'
echo $a

a=`ls −l` # Assigns result of 'ls −l' command to 'a'
echo $a

exit 0

Variable assignment using the $(...) mechanism (a newer method than backquotes)

From /etc/rc.d/rc.local
R=$(cat /etc/redhat−release)
arch=$(uname −m)

5.3. Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by "type". Essentially,
Bash variables are character strings, but, depending on context, Bash permits integer operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 5−4. Integer or string?

#!/bin/bash
int−or−string.sh
Integer or string?

a=2334 # Integer.
let "a += 1"
echo "a = $a " # Integer, still.
echo

b=${a/23/BB} # Transform into a string.
echo "b = $b" # BB35
declare −i b # Declaring it an integer doesn't help.

Advanced Bash−Scripting Guide

5.3. Bash Variables Are Untyped 26

echo "b = $b" # BB35, still.

let "b += 1" # BB35 + 1 =
echo "b = $b" # 1
echo

c=BB34
echo "c = $c" # BB34
d=${c/BB/23} # Transform into an integer.
echo "d = $d" # 2334
let "d += 1" # 2334 + 1 =
echo "d = $d" # 2335

Variables in Bash are essentially untyped.

exit 0

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting (enough rope to
hang yourself) and make it easier to grind out lines of code. However, they permit errors to creep in and
encourage sloppy programming habits.

The burden is on the programmer to keep track of what type the script variables are. Bash will not do it for
you.

5.4. Special Variable Types

local variables

variables visible only within a code block or function (see also local variables in functions)

environmental variables

variables that affect the behavior of the shell and user interface

In a more general context, each process has an
"environment", that is, a group of variables that
hold information that the process may reference.
In this sense, the shell behaves like any other
process.

Every time a shell starts, it creates shell variables
that correspond to its own environmental
variables. Updating or adding new shell variables
causes the shell to update its environment, and all
the shell's child processes (the commands it
executes) inherit this environment.

The space allotted to the environment is limited. Creating too many environmental
variables or ones that use up excessive space may cause problems.

Advanced Bash−Scripting Guide

5.4. Special Variable Types 27

#LOCALREF

bash$ eval "`seq 10000 | sed −e 's/.*/export var&=ZZZZZZZZZZZZZZ/'`"

bash$ du
bash: /usr/bin/du: Argument list too long

(Thank you, S. C. for the clarification, and for providing the above example.)

If a script sets environmental variables, they need to be "exported", that is, reported to the
environment local to the script. This is the function of the export command.

A script can export variables only to child
processes, that is, only to commands or processes
which that particular script initiates. A script
invoked from the command line cannot export
variables back to the command line environment.
Child processes cannot export variables back to the
parent processes that spawned them.

−−−

positional parameters

arguments passed to the script from the command line − $0, $1, $2, $3... $0 is the name of the script
itself, $1 is the first argument, $2 the second, $3 the third, and so forth. [13] After $9, the arguments
must be enclosed in brackets, for example, ${10}, ${11}, ${12}.

Example 5−5. Positional Parameters

#!/bin/bash

Call this script with at least 10 parameters, for example
./scriptname 1 2 3 4 5 6 7 8 9 10

echo

echo "The name of this script is \"$0\"."
Adds ./ for current directory
echo "The name of this script is \"`basename $0`\"."
Strips out path name info (see 'basename')

echo

if [−n "$1"] # Tested variable is quoted.
then
 echo "Parameter #1 is $1" # Need quotes to escape #
fi

if [−n "$2"]
then
 echo "Parameter #2 is $2"
fi

Advanced Bash−Scripting Guide

5.4. Special Variable Types 28

if [−n "$3"]
then
 echo "Parameter #3 is $3"
fi

...

if [−n "${10}"] # Parameters > $9 must be enclosed in {brackets}.
then
 echo "Parameter #10 is ${10}"
fi

echo

exit 0

Some scripts can perform different operations, depending on which name they are invoked with. For
this to work, the script needs to check $0, the name it was invoked by. There must also exist
symbolic links to all the alternate names of the script.

If a script expects a command line parameter but
is invoked without one, this may cause a null
variable assignment, generally an undesirable
result. One way to prevent this is to append an
extra character to both sides of the assignment
statement using the expected positional
parameter.

variable1_=$1_
This will prevent an error, even if positional parameter is absent.

critical_argument01=$variable1_

The extra character can be stripped off later, if desired, like so.
variable1=${variable1_/_/} # Side effects only if $variable1_ begins with "_".
This uses one of the parameter substitution templates discussed in Chapter 9.
Leaving out the replacement pattern results in a deletion.

A more straightforward way of dealing with this is
#+ to simply test whether expected positional parameters have been passed.
if [−z $1]
then
 exit $POS_PARAMS_MISSING
fi

−−−

Example 5−6. wh, whois domain name lookup

#!/bin/bash

Does a 'whois domain−name' lookup on any of 3 alternate servers:
ripe.net, cw.net, radb.net

Place this script, named 'wh' in /usr/local/bin

Advanced Bash−Scripting Guide

5.4. Special Variable Types 29

Requires symbolic links:
ln −s /usr/local/bin/wh /usr/local/bin/wh−ripe
ln −s /usr/local/bin/wh /usr/local/bin/wh−cw
ln −s /usr/local/bin/wh /usr/local/bin/wh−radb

if [−z "$1"]
then
 echo "Usage: `basename $0` [domain−name]"
 exit 65
fi

case `basename $0` in
Checks script name and calls proper server
 "wh") whois $1@whois.ripe.net;;
 "wh−ripe") whois $1@whois.ripe.net;;
 "wh−radb") whois $1@whois.radb.net;;
 "wh−cw") whois $1@whois.cw.net;;
 *) echo "Usage: `basename $0` [domain−name]";;
esac

exit 0

−−−

The shift command reassigns the positional parameters, in effect shifting them to the left one notch.

$1 <−−− $2, $2 <−−− $3, $3 <−−− $4, etc.

The old $1 disappears, but $0 does not change. If you use a large number of positional parameters to
a script, shift lets you access those past 10, although {bracket} notation also permits this (see
Example 5−5).

Example 5−7. Using shift

#!/bin/bash
Using 'shift' to step through all the positional parameters.

Name this script something like shft,
and invoke it with some parameters, for example
./shft a b c def 23 skidoo

until [−z "$1"] # Until all parameters used up...
do
 echo −n "$1 "
 shift
done

echo # Extra line feed.

exit 0

Advanced Bash−Scripting Guide

5.4. Special Variable Types 30

Chapter 6. Quoting

Quoting means just that, bracketing a string in quotes. This has the effect of protecting special characters in
the string from reinterpretation or expansion by the shell or shell script. (A character is "special" if it has an
interpretation other than its literal meaning, such as the wild card character, *.)

bash$ ls −l [Vv]*
−rw−rw−r−− 1 bozo bozo 324 Apr 2 15:05 VIEWDATA.BAT
 −rw−rw−r−− 1 bozo bozo 507 May 4 14:25 vartrace.sh
 −rw−rw−r−− 1 bozo bozo 539 Apr 14 17:11 viewdata.sh

bash$ ls −l '[Vv]*'
ls: [Vv]*: No such file or directory

Certain programs and utilities can still reinterpret or expand special characters in
a quoted string. This is an important use of quoting, protecting a command−line
parameter from the shell, but still letting the calling program expand it.

bash$ grep '[Ff]irst' *.txt
file1.txt:This is the first line of file1.txt.
 file2.txt:This is the First line of file2.txt.

Of course, grep [Ff]irst *.txt would not work.

When referencing a variable, it is generally advisable in enclose it in double quotes (" "). This preserves all
special characters within the variable name, except $, ` (backquote), and \ (escape). Keeping $ as a special
character permits referencing a quoted variable ("$variable"), that is, replacing the variable with its
value (see Example 5−1, above).

Use double quotes to prevent word splitting. [14] An argument enclosed in double quotes presents itself as a
single word, even if it contains whitespace separators.

variable1="a variable containing five words"
COMMAND This is $variable1 # Executes COMMAND with 7 arguments:
"This" "is" "a" "variable" "containing" "five" "words"

COMMAND "This is $variable1" # Executes COMMAND with 1 argument:
"This is a variable containing five words"

variable2="" # Empty.

COMMAND $variable2 $variable2 $variable2 # Executes COMMAND with no arguments.
COMMAND "$variable2" "$variable2" "$variable2" # Executes COMMAND with 3 empty arguments.
COMMAND "$variable2 $variable2 $variable2" # Executes COMMAND with 1 argument (2 spaces).

Thanks, S.C.

Enclosing the arguments to an echo statement in double
quotes is necessary only when word splitting is an issue.

Chapter 6. Quoting 31

Example 6−1. Echoing Weird Variables

#!/bin/bash
weirdvars.sh: Echoing weird variables.

var="'(]\\{}\$\""
echo $var # '(]\{}$"
echo "$var" # '(]\{}$" Doesn't make a difference.

echo

IFS='\'
echo $var # '(] {}$" \ converted to space.
echo "$var" # '(]\{}$"

Examples above supplied by S.C.

exit 0

Single quotes (' ') operate similarly to double quotes, but do not permit referencing variables, since the special
meaning of $ is turned off. Within single quotes, every special character except ' gets interpreted literally.
Consider single quotes ("full quoting") to be a stricter method of quoting than double quotes ("partial
quoting").

Since even the escape character (\) gets a literal interpretation within single quotes, trying to
enclose a single quote within single quotes will not yield the expected result.

echo "Why can't I write 's between single quotes"

echo

The roundabout method.
echo 'Why can'\''t I write '"'"'s between single quotes'
|−−−−−−−| |−−−−−−−−−−| |−−−−−−−−−−−−−−−−−−−−−−−|
Three single−quoted strings, with escaped and quoted single quotes between.

This example courtesy of Stephane Chazelas.

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

With certain commands and utilities, such as echo and
sed, escaping a character may have the opposite effect −
it can toggle on a special meaning for that character.

Special meanings of certain escaped characters

used with echo and sed

\n

means newline

Advanced Bash−Scripting Guide

Chapter 6. Quoting 32

\r

means return

\t

means tab

\v

means vertical tab

\b

means backspace

\a

means "alert" (beep or flash)

\0xx

translates to the octal ASCII equivalent of 0xx

Example 6−2. Escaped Characters

#!/bin/bash
escaped.sh: escaped characters

echo; echo

echo "\v\v\v\v" # Prints \v\v\v\v
Must use the −e option with 'echo' to print escaped characters.
echo −e "\v\v\v\v" # Prints 4 vertical tabs.
echo −e "\042" # Prints " (quote, octal ASCII character 42).

Bash, version 2 and later, permits using the $'\xxx' construct.
echo $'\n'
echo $'\a'
echo $'\t \042 \t' # Quote (") framed by tabs.

Assigning ASCII characters to a variable.
−−
quote=$'\042' # " assigned to a variable.
echo "$quote This is a quoted string, $quote and this lies outside the quotes."

echo

Concatenating ASCII chars in a variable.
triple_underline=$'\137\137\137' # 137 is octal ASCII code for "_".
echo "$triple_underline UNDERLINE $triple_underline"

ABC=$'\101\102\103\010' # 101, 102, 103 are octal A, B, C.
echo $ABC

Advanced Bash−Scripting Guide

Chapter 6. Quoting 33

echo; echo

escape=$'\033' # 033 is octal for escape.
echo "\"escape\" echoes as $escape"

echo; echo

exit 0

See Example 35−1 for another example of the $' ' string expansion construct.

\"

gives the quote its literal meaning

echo "Hello" # Hello
echo "\"Hello\", he said." # "Hello", he said.

\$

gives the dollar sign its literal meaning (variable name following \$ will not be referenced)

echo "\$variable01" # results in $variable01

\\

gives the backslash its literal meaning

echo "\\" # results in \

The behavior of \ depends on whether it is itself escaped, quoted, or appearing
within a here document.

echo \z # z
echo \\z # \z
echo '\z' # \z
echo '\\z' # \\z
echo "\z" # \z
echo "\\z" # \z
echo `echo \z` # z
echo `echo \\z` # z
echo `echo \\\z` # \z
echo `echo \\\\z` # \z
echo `echo \\\\\\z` # \z
echo `echo \\\\\\\z` # \\z
echo `echo "\z"` # \z
echo `echo "\\z"` # \z

cat <<EOF
\z
EOF # \z

cat <<EOF
\\z
EOF # \z

These examples supplied by Stephane Chazelas.

Advanced Bash−Scripting Guide

Chapter 6. Quoting 34

Escaping a space can prevent word splitting in a command's argument list.

file_list="/bin/cat /bin/gzip /bin/more /usr/bin/less /usr/bin/emacs−20.7"
List of files as argument(s) to a command.

Add two files to the list, and list all.
ls −l /usr/X11R6/bin/xsetroot /sbin/dump $file_list

echo "−−−"

What happens if we escape a couple of spaces?
ls −l /usr/X11R6/bin/xsetroot\ /sbin/dump\ $file_list
Error: the first three files concatenated into a single argument to 'ls −l'
because the two escaped spaces prevent argument (word) splitting.

The escape also provides a means of writing a multi−line command. Normally, each separate line constitutes
a different command, but an escape at the end of a line escapes the newline character, and the command
sequence continues on to the next line.

(cd /source/directory && tar cf − .) | \
(cd /dest/directory && tar xpvf −)
Repeating Alan Cox's directory tree copy command,
but split into two lines for increased legibility.

As an alternative:
tar cf − −C /source/directory |
tar xpvf − −C /dest/directory
See note below.
(Thanks, Stephane Chazelas.)

If a script line ends with a |, a pipe character, then a \, an
escape, is not strictly necessary. It is, however, good
programming practice to always escape the end of a line of
code that continues to the following line.

echo "foo
bar"
#foo
#bar

echo

echo 'foo
bar' # No difference yet.
#foo
#bar

echo

echo foo\
bar # Newline escaped.
#foobar

echo

echo "foo\
bar" # Same here, as \ still interpreted as escape within weak quotes.

Advanced Bash−Scripting Guide

Chapter 6. Quoting 35

#foobar

echo

echo 'foo\
bar' # Escape character \ taken literally because of strong quoting.
#foor\
#bar

Examples suggested by Stephane Chazelas.

Advanced Bash−Scripting Guide

Chapter 6. Quoting 36

Chapter 7. Tests

Every reasonably complete programming language can test for a condition, then act according to the result of
the test. Bash has the test command, various bracket and parenthesis operators, and the if/then construct.

7.1. Test Constructs

An if/then construct tests whether the exit status of a list of commands is 0 (since 0 means
"success" by UNIX convention), and if so, executes one or more commands.

•

There exists a dedicated command called [(left bracket special character). It is a synonym for test,
and a builtin for efficiency reasons. This command considers its arguments as comparison
expressions or file tests and returns an exit status corresponding to the result of the comparison (0 for
true, 1 for false).

•

With version 2.02, Bash introduced the [[...]] extended test command, which performs comparisons
in a manner more familiar to programmers from other languages. Note that [[is a keyword, not a
command.

•

Bash sees [[$a −lt $b]] as a single element, which returns an exit status.

The ((...)) and let ... constructs also return an exit status of 0 if the arithmetic expressions they
evaluate expand to a non−zero value. These arithmetic expansion constructs may therefore be used to
perform arithmetic comparisons.

let "1<2" returns 0 (as "1<2" expands to "1")
((0 && 1)) returns 1 (as "0 && 1" expands to "0")

An if can test any command, not just conditions enclosed within brackets. •
if cmp a b > /dev/null # Suppress output.
then echo "Files a and b are identical."
else echo "Files a and b differ."
fi

if grep −q Bash file
then echo "File contains at least one occurrence of Bash."
fi

if COMMAND_WHOSE_EXIT_STATUS_IS_0_UNLESS_ERROR_OCCURRED
then echo "Command succeeded."
else echo "Command failed."
fi

An if/then construct can contain nested comparisons and tests. •
if echo "Next *if* is part of the comparison for the first *if*."

 if [[$comparison = "integer"]]
 then ((a < b))
 else
 [[$a < $b]]
 fi

then
 echo '$a is less than $b'
fi

Chapter 7. Tests 37

This detailed "if−test" explanation courtesy of Stephane Chazelas.

Example 7−1. What is truth?

#!/bin/bash

echo

echo "Testing \"0\""
if [0] # zero
then
 echo "0 is true."
else
 echo "0 is false."
fi

echo

echo "Testing \"NULL\""
if [] # NULL (empty condition)
then
 echo "NULL is true."
else
 echo "NULL is false."
fi

echo

echo "Testing \"xyz\""
if [xyz] # string
then
 echo "Random string is true."
else
 echo "Random string is false."
fi

echo

echo "Testing \"\$xyz\""
if [$xyz] # Tests if $xyz is null, but...
 # it's only an uninitialized variable.
then
 echo "Uninitialized variable is true."
else
 echo "Uninitialized variable is false."
fi

echo

echo "Testing \"−n \$xyz\""
if [−n "$xyz"] # More pedantically correct.
then
 echo "Uninitialized variable is true."
else
 echo "Uninitialized variable is false."
fi

echo

xyz= # Initialized, but set to null value.

Advanced Bash−Scripting Guide

Chapter 7. Tests 38

echo "Testing \"−n \$xyz\""
if [−n "$xyz"]
then
 echo "Null variable is true."
else
 echo "Null variable is false."
fi

echo

When is "false" true?

echo "Testing \"false\""
if ["false"] # It seems that "false" is just a string.
then
 echo "\"false\" is true." #+ and it tests true.
else
 echo "\"false\" is false."
fi

echo

echo "Testing \"\$false\"" # Again, uninitialized variable.
if ["$false"]
then
 echo "\"\$false\" is true."
else
 echo "\"\$false\" is false."
fi # Now, we get the expected result.

echo

exit 0

Exercise. Explain the behavior of Example 7−1, above.

if [condition−true]
then
 command 1
 command 2
 ...
else
 # Optional (may be left out if not needed).
 # Adds default code block executing if original condition tests false.
 command 3
 command 4
 ...
fi

Add a semicolon when 'if' and 'then' are on same line.

if [−x "$filename"]; then

Else if and elif

elif

Advanced Bash−Scripting Guide

Chapter 7. Tests 39

elif is a contraction for else if. The effect is to nest an inner if/then construct within an outer one.

if [condition1]
then
 command1
 command2
 command3
elif [condition2]
Same as else if
then
 command4
 command5
else
 default−command
fi

The if test condition−true construct is the exact equivalent of if [condition−true]. As
it happens, the left bracket, [, is a token which invokes the test command. The closing right bracket,] , in an
if/test should not therefore be strictly necessary, however newer versions of Bash require it.

The test command is a Bash builtin which tests file types and
compares strings. Therefore, in a Bash script, test does not call the
external /usr/bin/test binary, which is part of the
sh−utils package. Likewise, [does not call /usr/bin/[, which
is linked to /usr/bin/test.

bash$ type test
test is a shell builtin
bash$ type '['
[is a shell builtin
bash$ type '[['
[[is a shell keyword
bash$ type ']]'
]] is a shell keyword
bash$ type ']'
bash: type:]: not found

Example 7−2. Equivalence of [] and test

#!/bin/bash

echo

if test −z "$1"
then
 echo "No command−line arguments."
else
 echo "First command−line argument is $1."
fi

if [−z "$1"] # Functionally identical to above code block.
if [−z "$1" should work, but...
#+ Bash responds to a missing close bracket with an error message.
then

Advanced Bash−Scripting Guide

Chapter 7. Tests 40

 echo "No command−line arguments."
else
 echo "First command−line argument is $1."
fi

echo

exit 0

The [[]] construct is the shell equivalent of []. This is the extended test command, adopted from ksh88.

No filename expansion or word splitting takes place
between [[and]], but there is parameter expansion and
command substitution.

file=/etc/passwd

if [[−e $file]]
then
 echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can
prevent many logic errors in scripts. For example, The
&&, ||, <, and > operators work within a [[]] test, despite
giving an error within a [] construct.

Following an if, neither the test command nor the test brackets ([] or [[]]) are strictly
necessary.

dir=/home/bozo

if cd "$dir" 2>/dev/null; then # "2>/dev/null" hides error message.
 echo "Now in $dir."
else
 echo "Can't change to $dir."
fi

The "if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in
combination with a list construct.

var1=20
var2=22
["$var1" −ne "$var2"] && echo "$var1 is not equal to $var2"

home=/home/bozo
[−d "$home"] || echo "$home directory does not exist."

The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it
returns an exit status of 1, or "false". A non−zero expression returns an exit status of 0, or "true". This is in
marked contrast to using the test and [] constructs previously discussed.

Advanced Bash−Scripting Guide

Chapter 7. Tests 41

Example 7−3. Arithmetic Tests using (())

#!/bin/bash
Arithmetic tests.

The ((...)) construct evaluates and tests numerical expressions.
Exit status opposite from [...] construct!

((0))
echo "Exit status of \"((0))\" is $?." # 1

((1))
echo "Exit status of \"((1))\" is $?." # 0

((5 > 4)) # true
echo $? # 0

((5 > 9)) # false
echo $? # 1

exit 0

7.2. File test operators

Returns true if...

−e

file exists

−f

file is a regular file (not a directory or device file)

−s

file is not zero size

−d

file is a directory

−b

file is a block device (floppy, cdrom, etc.)

−c

file is a character device (keyboard, modem, sound card, etc.)

−p

Advanced Bash−Scripting Guide

7.2. File test operators 42

file is a pipe

−h

file is a symbolic link

−L

file is a symbolic link

−S

file is a socket

−t

file (descriptor) is associated with a terminal device

This test option may be used to check whether the stdin ([−t 0]) or stdout ([−t 1]) in
a given script is a terminal.

−r

file has read permission (for the user running the test)

−w

file has write permission (for the user running the test)

−x

file has execute permission (for the user running the test)

−g

set−group−id (sgid) flag set on file or directory

If a directory has the sgid flag set, then a file created within that directory belongs to the group that
owns the directory, not necessarily to the group of the user who created the file. This may be useful
for a directory shared by a workgroup.

−u

set−user−id (suid) flag set on file

A binary owned by root with set−user−id flag set runs with root privileges, even when an
ordinary user invokes it. [15] This is useful for executables (such as pppd and cdrecord) that need to
access system hardware. Lacking the suid flag, these binaries could not be invoked by a non−root
user.

Advanced Bash−Scripting Guide

7.2. File test operators 43

−rwsr−xr−t 1 root 178236 Oct 2 2000 /usr/sbin/pppd

A file with the suid flag set shows an s in its permissions.
−k

sticky bit set

Commonly known as the "sticky bit", the save−text−mode flag is a special type of file permission. If
a file has this flag set, that file will be kept in cache memory, for quicker access. [16] If set on a
directory, it restricts write permission. Setting the sticky bit adds a t to the permissions on the file or
directory listing.

drwxrwxrwt 7 root 1024 May 19 21:26 tmp/

If a user does not own a directory that has the sticky bit set, but has write permission in that directory,
he can only delete files in it that he owns. This keeps users from inadvertently overwriting or deleting
each other's files in a publicly accessible directory, such as /tmp.

−O

you are owner of file

−G

group−id of file same as yours

−N

file modified since it was last read

f1 −nt f2

file f1 is newer than f2

f1 −ot f2

file f1 is older than f2

f1 −ef f2

files f1 and f2 are hard links to the same file

!

"not" −− reverses the sense of the tests above (returns true if condition absent).

Example 29−1, Example 10−7, Example 10−3, Example 29−3, and Example A−2 illustrate uses of the file
test operators.

Advanced Bash−Scripting Guide

7.2. File test operators 44

7.3. Comparison operators (binary)

integer comparison

−eq

is equal to

if ["$a" −eq "$b"]

−ne

is not equal to

if ["$a" −ne "$b"]

−gt

is greater than

if ["$a" −gt "$b"]

−ge

is greater than or equal to

if ["$a" −ge "$b"]

−lt

is less than

if ["$a" −lt "$b"]

−le

is less than or equal to

if ["$a" −le "$b"]

<

is less than (within double parentheses)

(("$a" < "$b"))

<=

is less than or equal to (within double parentheses)

Advanced Bash−Scripting Guide

7.3. Comparison operators (binary) 45

(("$a" <= "$b"))

>

is greater than (within double parentheses)

(("$a" > "$b"))

>=

is greater than or equal to (within double parentheses)

(("$a" >= "$b"))

string comparison

=

is equal to

if ["$a" = "$b"]

==

is equal to

if ["$a" == "$b"]

This is a synonym for =.

[[$a == z*]] # true if $a starts with an "z" (pattern matching)
[[$a == "z*"]] # true if $a is equal to z*

[$a == z*] # file globbing and word splitting take place
["$a" == "z*"] # true if $a is equal to z*

Thanks, S.C.

!=

is not equal to

if ["$a" != "$b"]

This operator uses pattern matching within a [[...]] construct.

<

is less than, in ASCII alphabetical order

if [["$a" < "$b"]]

Advanced Bash−Scripting Guide

7.3. Comparison operators (binary) 46

if ["$a" \< "$b"]

Note that the "<" needs to be escaped within a [] construct.

>

is greater than, in ASCII alphabetical order

if [["$a" > "$b"]]

if ["$a" \> "$b"]

Note that the ">" needs to be escaped within a [] construct.

See Example 26−4 for an application of this comparison operator.

−z

string is "null", that is, has zero length

−n

string is not "null".

The −n test absolutely requires that the string be
quoted within the test brackets. Using an
unquoted string with ! −z, or even just the
unquoted string alone within test brackets (see
Example 7−5) normally works, however, this is
an unsafe practice. Always quote a tested string.
[17]

Example 7−4. arithmetic and string comparisons

#!/bin/bash

a=4
b=5

Here "a" and "b" can be treated either as integers or strings.
There is some blurring between the arithmetic and string comparisons,
#+ since Bash variables are not strongly typed.

Bash permits integer operations and comparisons on variables
#+ whose value consists of all−integer characters.
Caution advised.

if ["$a" −ne "$b"]
then
 echo "$a is not equal to $b"
 echo "(arithmetic comparison)"
fi

Advanced Bash−Scripting Guide

7.3. Comparison operators (binary) 47

echo

if ["$a" != "$b"]
then
 echo "$a is not equal to $b."
 echo "(string comparison)"
fi

In this instance, both "−ne" and "!=" work.

echo

exit 0

Example 7−5. testing whether a string is null

#!/bin/bash
str−test.sh: Testing null strings and unquoted strings,
but not strings and sealing wax, not to mention cabbages and kings...

Using if [...]

If a string has not been initialized, it has no defined value.
This state is called "null" (not the same as zero).

if [−n $string1] # $string1 has not been declared or initialized.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi
Wrong result.
Shows $string1 as not null, although it was not initialized.

echo

Lets try it again.

if [−n "$string1"] # This time, $string1 is quoted.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi # Quote strings within test brackets!

echo

if [$string1] # This time, $string1 stands naked.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi
This works fine.
The [] test operator alone detects whether the string is null.
However it is good practice to quote it ("$string1").

Advanced Bash−Scripting Guide

7.3. Comparison operators (binary) 48

#
As Stephane Chazelas points out,
if [$string 1] has one argument, "]"
if ["$string 1"] has two arguments, the empty "$string1" and "]"

echo

string1=initialized

if [$string1] # Again, $string1 stands naked.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi
Again, gives correct result.
Still, it is better to quote it ("$string1"), because...

string1="a = b"

if [$string1] # Again, $string1 stands naked.
then
 echo "String \"string1\" is not null."
else
 echo "String \"string1\" is null."
fi
Not quoting "$string1" now gives wrong result!

exit 0
Also, thank you, Florian Wisser, for the "heads−up".

Example 7−6. zmost

#!/bin/bash

#View gzipped files with 'most'

NOARGS=65
NOTFOUND=66
NOTGZIP=67

if [$# −eq 0] # same effect as: if [−z "$1"]
$1 can exist, but be empty: zmost "" arg2 arg3
then
 echo "Usage: `basename $0` filename" >&2
 # Error message to stderr.
 exit $NOARGS
 # Returns 65 as exit status of script (error code).
fi

filename=$1

if [! −f "$filename"] # Quoting $filename allows for possible spaces.
then
 echo "File $filename not found!" >&2
 # Error message to stderr.

Advanced Bash−Scripting Guide

7.3. Comparison operators (binary) 49

 exit $NOTFOUND
fi

if [${filename##*.} != "gz"]
Using bracket in variable substitution.
then
 echo "File $1 is not a gzipped file!"
 exit $NOTGZIP
fi

zcat $1 | most

Uses the file viewer 'most' (similar to 'less').
Later versions of 'most' have file decompression capabilities.
May substitute 'more' or 'less', if desired.

exit $? # Script returns exit status of pipe.
Actually "exit $?" unnecessary, as the script will, in any case,
return the exit status of the last command executed.

compound comparison

−a

logical and

exp1 −a exp2 returns true if both exp1 and exp2 are true.

−o

logical or

exp1 −o exp2 returns true if either exp1 or exp2 are true.

These are similar to the Bash comparison operators && and ||, used within double brackets.

[[condition1 && condition2]]

The −o and −a operators work with the test command or occur within single test brackets.
if ["$exp1" −a "$exp2"]

Refer to Example 8−2 and Example 26−7 to see compound comparison operators in action.

7.4. Nested if/then Condition Tests

Condition tests using the if/then construct may be nested. The net result is identical to using the
&& compound comparison operator above.

if [condition1]
then
 if [condition2]
 then
 do−something # But only if both "condition1" and "condition2" valid.
 fi

Advanced Bash−Scripting Guide

7.4. Nested if/then Condition Tests 50

fi

See Example 35−3 for an example of nested if/then condition tests.

7.5. Testing Your Knowledge of Tests

The systemwide xinitrc file can be used to launch the X server. This file contains quite a number of
if/then tests, as the following excerpt shows.

if [−f $HOME/.Xclients]; then
 exec $HOME/.Xclients
elif [−f /etc/X11/xinit/Xclients]; then
 exec /etc/X11/xinit/Xclients
else
 # failsafe settings. Although we should never get here
 # (we provide fallbacks in Xclients as well) it can't hurt.
 xclock −geometry 100x100−5+5 &
 xterm −geometry 80x50−50+150 &
 if [−f /usr/bin/netscape −a −f /usr/share/doc/HTML/index.html]; then
 netscape /usr/share/doc/HTML/index.html &
 fi
fi

Explain the "test" constructs in the above excerpt, then examine the entire file,
/etc/X11/xinit/xinitrc, and analyze the if/then test constructs there. You may need to refer ahead
to the discussions of grep, sed, and regular expressions.

Advanced Bash−Scripting Guide

7.5. Testing Your Knowledge of Tests 51

Chapter 8. Operations and Related Topics

8.1. Operators

assignment

variable assignment

Initializing or changing the value of a variable

=

All−purpose assignment operator, which works for both arithmetic and string assignments.

var=27
category=minerals # No spaces allowed after the "=".

Do not confuse the "=" assignment operator with the = test operator.

= as a test operator

if ["$string1" = "$string2"]
if ["Xstring1" = "Xstring2"] is safer,
to prevent an error message should one of the variables be empty.
(The prepended "X" characters cancel out.)
then
 command
fi

arithmetic operators

+

plus

−

minus

*

multiplication

/

division

**

exponentiation

Chapter 8. Operations and Related Topics 52

Bash, version 2.02, introduced the "**" exponentiation operator.

let "z=5**3"
echo "z = $z" # z = 125

%

modulo, or mod (returns the remainder of an integer division operation)

bash$ echo `expr 5 % 3`
2

This operator finds use in, among other things, generating numbers within a specific range (see
Example 9−20 and Example 9−21) and formatting program output (see Example 26−6). It can even
be used to generate prime numbers, (see Example A−11).

+=

"plus−equal" (increment variable by a constant)

let "var += 5" results in var being incremented by 5.

−=

"minus−equal" (decrement variable by a constant)

*=

"times−equal" (multiply variable by a constant)

let "var *= 4" results in var being multiplied by 4.

/=

"slash−equal" (divide variable by a constant)

%=

"mod−equal" (remainder of dividing variable by a constant)

Arithmetic operators often occur in an expr or let expression.

Example 8−1. Using Arithmetic Operations

#!/bin/bash
Counting to 6 in 5 different ways.

n=1; echo −n "$n "

let "n = $n + 1" # let "n = n + 1" also works.
echo −n "$n "

Advanced Bash−Scripting Guide

Chapter 8. Operations and Related Topics 53

: $((n = $n + 1))
":" necessary because otherwise Bash attempts
#+ to interpret "$((n = $n + 1))" as a command.
echo −n "$n "

n=$(($n + 1))
echo −n "$n "

: $[n = $n + 1]
":" necessary because otherwise Bash attempts
#+ to interpret "$((n = $n + 1))" as a command.
Works even if "n" was initialized as a string.
echo −n "$n "

n=$[$n + 1]
Works even if "n" was initialized as a string.
#* Avoid this type of construct, since it is obsolete and nonportable.
echo −n "$n "; echo

Thanks, Stephane Chazelas.

exit 0

Integer variables in Bash are actually signed long (32−bit) integers, in the range of
−2147483648 to 2147483647. An operation that takes a variable outside these limits
will give an erroneous result.

a=2147483646
echo "a = $a" # a = 2147483646
let "a+=1" # Increment "a".
echo "a = $a" # a = 2147483647
let "a+=1" # increment "a" again, past the limit.
echo "a = $a" # a = −2147483648
 # ERROR (out of range)

Bash does not understand floating point arithmetic. It treats numbers containing a decimal point as
strings.

a=1.5

let "b = $a + 1.3" # Error.
t2.sh: let: b = 1.5 + 1.3: syntax error in expression (error token is ".5 + 1.3")

echo "b = $b" # b=1

Use bc in scripts that that need floating point calculations or math library functions.

bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use seems
to be manipulating and testing values read from ports or sockets. "Bit flipping" is more relevant to compiled
languages, such as C and C++, which run fast enough to permit its use on the fly.

bitwise operators

<<

Advanced Bash−Scripting Guide

Chapter 8. Operations and Related Topics 54

bitwise left shift (multiplies by 2 for each shift position)

<<=

"left−shift−equal"

let "var <<= 2" results in var left−shifted 2 bits (multiplied by 4)

>>

bitwise right shift (divides by 2 for each shift position)

>>=

"right−shift−equal" (inverse of <<=)

&

bitwise and

&=

"bitwise and−equal"

|

bitwise OR

|=

"bitwise OR−equal"

~

bitwise negate

!

bitwise NOT

^

bitwise XOR

^=

"bitwise XOR−equal"

logical operators

&&

Advanced Bash−Scripting Guide

Chapter 8. Operations and Related Topics 55

and (logical)

if [$condition1] && [$condition2]
Same as: if [$condition1 −a $condition2]
Returns true if both condition1 and condition2 hold true...

if [[$condition1 && $condition2]] # Also works.
Note that && operator not permitted within [...] construct.

&& may also, depending on context, be used in
an and list to concatenate commands.

||

or (logical)

if [$condition1] || [$condition2]
Same as: if [$condition1 −o $condition2]
Returns true if either condition1 or condition2 holds true...

if [[$condition1 || $condition2]] # Also works.
Note that || operator not permitted within [...] construct.

Bash tests the exit status of each statement
linked with a logical operator.

Example 8−2. Compound Condition Tests Using && and ||

#!/bin/bash

a=24
b=47

if ["$a" −eq 24] && ["$b" −eq 47]
then
 echo "Test #1 succeeds."
else
 echo "Test #1 fails."
fi

ERROR: if ["$a" −eq 24 && "$b" −eq 47]
attempts to execute ' ["$a" −eq 24 '
and fails to finding matching ']'.
#
if [[$a −eq 24 && $b −eq 24]] works
(The "&&" has a different meaning in line 17 than in line 6.)
Thanks, Stephane Chazelas.

if ["$a" −eq 98] || ["$b" −eq 47]
then
 echo "Test #2 succeeds."
else
 echo "Test #2 fails."
fi

Advanced Bash−Scripting Guide

Chapter 8. Operations and Related Topics 56

The −a and −o options provide
#+ an alternative compound condition test.
Thanks to Patrick Callahan for pointing this out.

if ["$a" −eq 24 −a "$b" −eq 47]
then
 echo "Test #3 succeeds."
else
 echo "Test #3 fails."
fi

if ["$a" −eq 98 −o "$b" −eq 47]
then
 echo "Test #4 succeeds."
else
 echo "Test #4 fails."
fi

a=rhino
b=crocodile
if ["$a" = rhino] && ["$b" = crocodile]
then
 echo "Test #5 succeeds."
else
 echo "Test #5 fails."
fi

exit 0

The && and || operators also find use in an arithmetic context.

bash$ echo $((1 && 2)) $((3 && 0)) $((4 || 0)) $((0 || 0))
1 0 1 0

miscellaneous operators

,

comma operator

The comma operator chains together two or more arithmetic operations. All the operations are
evaluated (with possible side effects, but only the last operation is returned.

let "t1 = ((5 + 3, 7 − 1, 15 − 4))"
echo "t1 = $t1" # t1 = 11

let "t2 = ((a = 9, 15 / 3))" # Set "a" and calculate "t2".
echo "t2 = $t2 a = $a" # t2 = 5 a = 9

The comma operator finds use mainly in for loops. See Example 10−11.

Advanced Bash−Scripting Guide

Chapter 8. Operations and Related Topics 57

8.2. Numerical Constants

A shell script interprets a number as decimal (base 10), unless that number has a special prefix or notation. A
number preceded by a 0 is octal (base 8). A number preceded by 0x is hexadecimal (base 16). A
number with an embedded # is evaluated as BASE#NUMBER (this option is of limited usefulness because of
range restrictions).

Example 8−3. Representation of numerical constants:

#!/bin/bash
numbers.sh: Representation of numbers.

Decimal
let "d = 32"
echo "d = $d"
Nothing out of the ordinary here.

Octal: numbers preceded by '0' (zero)
let "o = 071"
echo "o = $o"
Expresses result in decimal.

Hexadecimal: numbers preceded by '0x' or '0X'
let "h = 0x7a"
echo "h = $h"
Expresses result in decimal.

Other bases: BASE#NUMBER
BASE between 2 and 36.
let "b = 32#77"
echo "b = $b"
#
This notation only works for a limited range (2 − 36)
 # ... 10 digits + 26 alpha characters = 36.
let "c = 2#47" # Out of range error:
numbers.sh: let: c = 2#47: value too great for base (error token is "2#47")
echo "c = $c"

echo

echo $((36#zz)) $((2#10101010)) $((16#AF16))

exit 0
Thanks, S.C., for clarification.

Part 3. Beyond the Basics

Table of Contents
9. Variables Revisited

9.1. Internal Variables
9.2. Manipulating Strings
9.3. Parameter Substitution
9.4. Typing variables: declare or typeset
9.5. Indirect References to Variables

Advanced Bash−Scripting Guide

8.2. Numerical Constants 58

9.6. $RANDOM: generate random integer
9.7. The Double Parentheses Construct

10. Loops and Branches
10.1. Loops
10.2. Nested Loops
10.3. Loop Control
10.4. Testing and Branching

11. Internal Commands and Builtins
11.1. Job Control Commands

12. External Filters, Programs and Commands
12.1. Basic Commands
12.2. Complex Commands
12.3. Time / Date Commands
12.4. Text Processing Commands
12.5. File and Archiving Commands
12.6. Communications Commands
12.7. Terminal Control Commands
12.8. Math Commands
12.9. Miscellaneous Commands

13. System and Administrative Commands
14. Command Substitution
15. Arithmetic Expansion
16. I/O Redirection

16.1. Using exec
16.2. Redirecting Code Blocks
16.3. Applications

17. Here Documents
18. Recess Time

Advanced Bash−Scripting Guide

8.2. Numerical Constants 59

Chapter 9. Variables Revisited
Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties and
nuances.

9.1. Internal Variables

Builtin variables

variables affecting bash script behavior

$BASH

the path to the Bash binary itself, usually /bin/bash

$BASH_ENV

an environmental variable pointing to a Bash startup file to be read when a script is invoked

$BASH_VERSINFO[n]

a 6−element array containing version information about the installed release of Bash. This is similar
to $BASH_VERSION, below, but a bit more detailed.

Bash version info:

for n in 0 1 2 3 4 5
do
 echo "BASH_VERSINFO[$n] = ${BASH_VERSINFO[$n]}"
done

BASH_VERSINFO[0] = 2 # Major version no.
BASH_VERSINFO[1] = 04 # Minor version no.
BASH_VERSINFO[2] = 21 # Patch level.
BASH_VERSINFO[3] = 1 # Build version.
BASH_VERSINFO[4] = release # Release status.
BASH_VERSINFO[5] = i386−redhat−linux−gnu # Architecture
 # (same as $MACHTYPE).

$BASH_VERSION

the version of Bash installed on the system

bash$ echo $BASH_VERSION
2.04.12(1)−release

tcsh% echo $BASH_VERSION
BASH_VERSION: Undefined variable.

Chapter 9. Variables Revisited 60

Checking $BASH_VERSION is a good method of determining which shell is running. $SHELL does
not necessarily give the correct answer.

$DIRSTACK

contents of the directory stack (affected by pushd and popd)

This builtin variable is the counterpart to the dirs command.

$EDITOR

the default editor invoked by a script, usually vi or emacs.

$EUID

"effective" user id number

Identification number of whatever identity the current user has assumed, perhaps by means of su.

The $EUID is not necessarily the same as the
$UID.

$FUNCNAME

name of the current function

xyz23 ()
{
 echo "$FUNCNAME now executing." # xyz23 now executing.
}

xyz23

echo "FUNCNAME = $FUNCNAME" # FUNCNAME =
 # Null value outside a function.

$GLOBIGNORE

A list of filename patterns to be excluded from matching in globbing.

$GROUPS

groups current user belongs to

This is a listing (array) of the group id numbers for current user, as recorded in /etc/passwd.

$HOME

home directory of the user, usually /home/username (see Example 9−11)

$HOSTNAME

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 61

The hostname command assigns the system name at bootup in an init script. However, the
gethostname() function sets the Bash internal variable $HOSTNAME. See also Example 9−11.

$HOSTTYPE

host type

Like $MACHTYPE, identifies the system hardware.

bash$ echo $HOSTTYPE
i686

$IFS

input field separator

This defaults to whitespace (space, tab, and newline), but may be changed, for example, to parse a
comma−separated data file. Note that $* uses the first character held in $IFS. See Example 6−1.

bash$ echo $IFS | cat −vte
$

bash$ bash −c 'set w x y z; IFS=":−;"; echo "$*"'
w:x:y:z

$IFS does not handle whitespace the same as it does other characters.

Example 9−1. $IFS and whitespace

#!/bin/bash
$IFS treats whitespace differently than other characters.

output_args_one_per_line()
{
 for arg
 do echo "[$arg]"
 done
}

echo; echo "IFS=\" \""
echo "−−−−−−−"

IFS=" "
var=" a b c "
output_args_one_per_line $var # output_args_one_per_line `echo " a b c "`
#
[a]
[b]
[c]

echo; echo "IFS=:"
echo "−−−−−"

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 62

IFS=:
var=":a::b:c:::" # Same as above, but substitute ":" for " ".
output_args_one_per_line $var
#
[]
[a]
[]
[b]
[c]
[]
[]
[]

The same thing happens with the "FS" field separator in awk.

Thank you, Stephane Chazelas.

echo

exit 0

(Thanks, S. C., for clarification and examples.)

$IGNOREEOF

ignore EOF: how many end−of−files (control−D) the shell will ignore before logging out.

$LC_COLLATE

Often set in the .bashrc or /etc/profile files, this variable controls collation order in
filename expansion and pattern matching. If mishandled, LC_COLLATE can cause unexpected
results in filename globbing.

As of version 2.05 of Bash, filename globbing no
longer distinguishes between lowercase and uppercase
letters in a character range between brackets. For
example, ls [A−M]* would match both
File1.txt and file1.txt. To revert to the
customary behavior of bracket matching, set
LC_COLLATE to C by an export
LC_COLLATE=C in /etc/profile and/or
~/.bashrc.

$LC_CTYPE

This internal variable controls character interpretation in globbing and pattern matching.

$LINENO

This variable is the line number of the shell script in which this variable appears. It has significance
only within the script in which it appears, and is chiefly useful for debugging purposes.

last_cmd_arg=$_ # Save it.

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 63

echo "At line number $LINENO, variable \"v1\" = $v1"
echo "Last command argument processed = $last_cmd_arg"

$MACHTYPE

machine type

Identifies the system hardware.

bash$ echo $MACHTYPE
i686−debian−linux−gnu

$OLDPWD

old working directory ("OLD−print−working−directory", previous directory you were in)

$OSTYPE

operating system type

bash$ echo $OSTYPE
linux−gnu

$PATH

path to binaries, usually /usr/bin/, /usr/X11R6/bin/, /usr/local/bin, etc.

When given a command, the shell automatically does a hash table search on the directories listed in
the path for the executable. The path is stored in the environmental variable, $PATH, a list of
directories, separated by colons. Normally, the system stores the $PATH definition in
/etc/profile and/or ~/.bashrc (see Chapter 27).

bash$ echo $PATH
/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin:/sbin:/usr/sbin

PATH=${PATH}:/opt/bin appends the /opt/bin directory to the current path. In a script, it
may be expedient to temporarily add a directory to the path in this way. When the script exits, this
restores the original $PATH (a child process, such as a script, may not change the environment of the
parent process, the shell).

The current "working directory", ./, is usually
omitted from the $PATH as a security measure.

$PIPESTATUS

Exit status of last executed pipe. Interestingly enough, this does not give the same result as the exit
status of the last executed command.

bash$ echo $PIPESTATUS
0

bash$ ls −al | bogus_command
bash: bogus_command: command not found
bash$ echo $PIPESTATUS
141

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 64

bash$ ls −al | bogus_command
bash: bogus_command: command not found
bash$ echo $?
127

$PPID

The $PPID of a process is the process id (pid) of its parent process. [18]

Compare this with the pidof command.

$PS1

This is the main prompt, seen at the command line.

$PS2

The secondary prompt, seen when additional input is expected. It displays as ">".

$PS3

The tertiary prompt, displayed in a select loop (see Example 10−27).

$PS4

The quartenary prompt, shown at the beginning of each line of output when invoking a script with the
−x option. It displays as "+".

$PWD

working directory (directory you are in at the time)

This is the analog to the pwd builtin command.

#!/bin/bash

E_WRONG_DIRECTORY=73

clear # Clear screen.

TargetDirectory=/home/bozo/projects/GreatAmericanNovel

cd $TargetDirectory
echo "Deleting stale files in $TargetDirectory."

if ["$PWD" != "$TargetDirectory"]
then # Keep from wiping out wrong directory by accident.
 echo "Wrong directory!"
 echo "In $PWD, rather than $TargetDirectory!"
 echo "Bailing out!"
 exit $E_WRONG_DIRECTORY
fi

rm −rf *

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 65

rm .[A−Za−z0−9]* # Delete dotfiles.
rm −f .[^.]* ..?* to remove filenames beginning with multiple dots.
(shopt −s dotglob; rm −f *) will also work.
Thanks, S.C. for pointing this out.

Filenames may contain all characters in the 0 − 255 range, except "/".
Deleting files beginning with weird characters is left as an exercise.

Various other operations here, as necessary.

echo
echo "Done."
echo "Old files deleted in $TargetDirectory."
echo

exit 0

$REPLY

The default value when a variable is not supplied to read. Also applicable to select menus, but only
supplies the item number of the variable chosen, not the value of the variable itself.

#!/bin/bash

echo
echo −n "What is your favorite vegetable? "
read

echo "Your favorite vegetable is $REPLY."
REPLY holds the value of last "read" if and only if
no variable supplied.

echo
echo −n "What is your favorite fruit? "
read fruit
echo "Your favorite fruit is $fruit."
echo "but..."
echo "Value of \$REPLY is still $REPLY."
$REPLY is still set to its previous value because
the variable $fruit absorbed the new "read" value.

echo

exit 0

$SECONDS

The number of seconds the script has been running.

#!/bin/bash

ENDLESS_LOOP=1
INTERVAL=1

echo
echo "Hit Control−C to exit this script."
echo

while [$ENDLESS_LOOP]
do
 if ["$SECONDS" −eq 1]

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 66

 then
 units=second
 else
 units=seconds
 fi

 echo "This script has been running $SECONDS $units."
 sleep $INTERVAL
done

exit 0

$SHELLOPTS

the list of enabled shell options, a readonly variable

$SHLVL

Shell level, how deeply Bash is nested. If, at the command line, $SHLVL is 1, then in a script it will
increment to 2.

$TMOUT

If the $TMOUT environmental variable is set to a non−zero value time, then the shell prompt will time
out after time seconds. This will cause a logout.

Unfortunately, this works only while waiting for
input at the shell prompt console or in an xterm.
While it would be nice to speculate on the uses of
this internal variable for timed input, for example
in combination with read, $TMOUT does not work
in that context and is virtually useless for shell
scripting. (Reportedly the ksh version of a timed
read does work).

Implementing timed input in a script is certainly possible, but hardly seems worth the effort. One
method is to set up a timing loop to signal the script when it times out. This also requires a signal
handling routine to trap (see Example 30−4) the interrupt generated by the timing loop (whew!).

Example 9−2. Timed Input

#!/bin/bash
timed−input.sh

TMOUT=3 useless in a script

TIMELIMIT=3 # Three seconds in this instance, may be set to different value.

PrintAnswer()
{
 if ["$answer" = TIMEOUT]
 then
 echo $answer

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 67

 else # Don't want to mix up the two instances.
 echo "Your favorite veggie is $answer"
 kill $! # Kills no longer needed TimerOn function running in background.
 # $! is PID of last job running in background.
 fi

}

TimerOn()
{
 sleep $TIMELIMIT && kill −s 14 $$ &
 # Waits 3 seconds, then sends sigalarm to script.
}

Int14Vector()
{
 answer="TIMEOUT"
 PrintAnswer
 exit 14
}

trap Int14Vector 14 # Timer interrupt (14) subverted for our purposes.

echo "What is your favorite vegetable "
TimerOn
read answer
PrintAnswer

Admittedly, this is a kludgy implementation of timed input,
but pretty much as good as can be done with Bash.
(Challenge to reader: come up with something better.)

If you need something a bit more elegant...
consider writing the application in C or C++,
using appropriate library functions, such as 'alarm' and 'setitimer'.

exit 0

An alternative is using stty.

Example 9−3. Once more, timed input

#!/bin/bash
timeout.sh

Written by Stephane Chazelas,
and modified by the document author.

INTERVAL=5 # timeout interval

timedout_read() {
 timeout=$1
 varname=$2
 old_tty_settings=`stty −g`
 stty −icanon min 0 time ${timeout}0
 eval read $varname # or just read $varname

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 68

 stty "$old_tty_settings"
 # See man page for "stty".
}

echo; echo −n "What's your name? Quick! "
timedout_read $INTERVAL your_name

This may not work on every terminal type.
The maximum timeout depends on the terminal.
(it is often 25.5 seconds).

echo

if [! −z "$your_name"] # If name input before timeout...
then
 echo "Your name is $your_name."
else
 echo "Timed out."
fi

echo

The behavior of this script differs somewhat from "timed−input.sh".
At each keystroke, the counter resets.

exit 0

$UID

user id number

current user's user identification number, as recorded in /etc/passwd

This is the current user's real id, even if she has temporarily assumed another identity through su.
$UID is a readonly variable, not subject to change from the command line or within a script, and is
the counterpart to the id builtin.

Example 9−4. Am I root?

#!/bin/bash
am−i−root.sh: Am I root or not?

ROOT_UID=0 # Root has $UID 0.

if ["$UID" −eq "$ROOT_UID"] # Will the real "root" please stand up?
then
 echo "You are root."
else
 echo "You are just an ordinary user (but mom loves you just the same)."
fi

exit 0

===
Code below will not execute, because the script already exited.

An alternate method of getting to the root of matters:

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 69

ROOTUSER_NAME=root

username=`id −nu`
if ["$username" = "$ROOTUSER_NAME"]
then
 echo "Rooty, toot, toot. You are root."
else
 echo "You are just a regular fella."
fi

exit 0

See also Example 2−2.

The variables $ENV, $LOGNAME, $MAIL, $TERM,
$USER, and $USERNAME are not Bash builtins. These
are, however, often set as environmental variables in
one of the Bash startup files. $SHELL, the name of the
user's login shell, may be set from /etc/passwd or
in an "init" script, and it is likewise not a Bash builtin.

tcsh% echo $LOGNAME
bozo
tcsh% echo $SHELL
/bin/tcsh
tcsh% echo $TERM
rxvt

bash$ echo $LOGNAME
bozo
bash$ echo $SHELL
/bin/tcsh
bash$ echo $TERM
rxvt

Positional Parameters

$0, $1, $2, etc.

positional parameters, passed from command line to script, passed to a function, or set to a variable
(see Example 5−5 and Example 11−10)

$#

number of command line arguments [19] or positional parameters (see Example 34−2)

$*

All of the positional parameters, seen as a single word

$@

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 70

#FILESREF

Same as $*, but each parameter is a quoted string, that is, the parameters are passed on intact, without
interpretation or expansion. This means, among other things, that each parameter in the argument list
is seen as a separate word.

Example 9−5. arglist: Listing arguments with $* and $@

#!/bin/bash
Invoke this script with several arguments, such as "one two three".

E_BADARGS=65

if [! −n "$1"]
then
 echo "Usage: `basename $0` argument1 argument2 etc."
 exit $E_BADARGS
fi

echo

index=1

echo "Listing args with \"\$*\":"
for arg in "$*" # Doesn't work properly if "$*" isn't quoted.
do
 echo "Arg #$index = $arg"
 let "index+=1"
done # $* sees all arguments as single word.
echo "Entire arg list seen as single word."

echo

index=1

echo "Listing args with \"\$@\":"
for arg in "$@"
do
 echo "Arg #$index = $arg"
 let "index+=1"
done # $@ sees arguments as separate words.
echo "Arg list seen as separate words."

echo

exit 0

The $@ special parameter finds use as a tool for filtering input into shell scripts. The cat
"$@" construction accepts input to a script either from stdin or from files given as parameters to
the script. See Example 12−17 and Example 12−18.

The $* and $@ parameters sometimes display
inconsistent and puzzling behavior, depending on
the setting of $IFS.

Example 9−6. Inconsistent $* and $@ behavior

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 71

#!/bin/bash

Erratic behavior of the "$*" and "$@" internal Bash variables,
depending on whether these are quoted or not.
Word splitting and linefeeds handled inconsistently.

This example script by Stephane Chazelas,
and slightly modified by the document author.

set −− "First one" "second" "third:one" "" "Fifth: :one"
Setting the script arguments, $1, $2, etc.

echo

echo 'IFS unchanged, using "$*"'
c=0
for i in "$*" # quoted
do echo "$((c+=1)): [$i]" # This line remains the same in every instance.
 # Echo args.
done
echo −−−

echo 'IFS unchanged, using $*'
c=0
for i in $* # unquoted
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS unchanged, using "$@"'
c=0
for i in "$@"
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS unchanged, using $@'
c=0
for i in $@
do echo "$((c+=1)): [$i]"
done
echo −−−

IFS=:
echo 'IFS=":", using "$*"'
c=0
for i in "$*"
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS=":", using $*'
c=0
for i in $*
do echo "$((c+=1)): [$i]"
done
echo −−−

var=$*
echo 'IFS=":", using "$var" (var=$*)'
c=0

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 72

for i in "$var"
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS=":", using $var (var=$*)'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done
echo −−−

var="$*"
echo 'IFS=":", using $var (var="$*")'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS=":", using "$var" (var="$*")'
c=0
for i in "$var"
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS=":", using "$@"'
c=0
for i in "$@"
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS=":", using $@'
c=0
for i in $@
do echo "$((c+=1)): [$i]"
done
echo −−−

var=$@
echo 'IFS=":", using $var (var=$@)'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done
echo −−−

echo 'IFS=":", using "$var" (var=$@)'
c=0
for i in "$var"
do echo "$((c+=1)): [$i]"
done
echo −−−

var="$@"
echo 'IFS=":", using "$var" (var="$@")'
c=0
for i in "$var"
do echo "$((c+=1)): [$i]"
done

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 73

echo −−−

echo 'IFS=":", using $var (var="$@")'
c=0
for i in $var
do echo "$((c+=1)): [$i]"
done

echo

Try this script with ksh or zsh −y.

exit 0

The $@ and $* parameters differ only when
between double quotes.

Example 9−7. $* and $@ when $IFS is empty

#!/bin/bash

If $IFS set, but empty,
then "$*" and "$@" do not echo positional params as expected.

mecho () # Echo positional parameters.
{
echo "$1,$2,$3";
}

IFS="" # Set, but empty.
set a b c # Positional parameters.

mecho "$*" # abc,,
mecho $* # a,b,c

mecho $@ # a,b,c
mecho "$@" # a,b,c

The behavior of $* and $@ when $IFS is empty depends
on whatever Bash or sh version being run.
It is therefore inadvisable to depend on this "feature" in a script.

Thanks, S.C.

exit 0

Other Special Parameters

$−

Flags passed to script

This was originally a ksh construct adopted into
Bash, and unfortunately it does not seem to work

Advanced Bash−Scripting Guide

Chapter 9. Variables Revisited 74

reliably in Bash scripts. One possible use for it is
to have a script self−test whether it is interactive.

$!

PID (process id) of last job run in background

$_

Special variable set to last argument of previous command executed.

Example 9−8. underscore variable

#!/bin/bash

echo $_ # /bin/bash
Just called /bin/bash to run the script.

du >/dev/null # So no output from command.
echo $_ # du

ls −al # So no output from command.
echo $_ # −al (last argument)

:
echo $_ # :

$?

exit status of a command, function, or the script itself (see Example 23−3)

$$

process id of script, often used in scripts to construct temp file names (see Example A−8, Example
30−5, and Example 12−23)

9.2. Manipulating Strings

Bash supports a surprising number of string manipulation operations. Unfortunately, these tools lack a unified
focus. Some are a subset of parameter substitution, and others fall under the functionality of the UNIX
expr command. This results in inconsistent command syntax and overlap of functionality, not to mention
confusion.

String Length

${#string}

expr length $string

expr "$string" : '.*'

Advanced Bash−Scripting Guide

9.2. Manipulating Strings 75

stringZ=abcABC123ABCabc

echo ${#stringZ} # 15
echo `expr length $stringZ` # 15
echo `expr "$stringZ" : '.*'` # 15

Length of Matching Substring at Beginning of String

expr match "$string" '$substring'

$substring is a regular expression.

expr "$string" : '$substring'

$substring is a regular expression.

stringZ=abcABC123ABCabc
|−−−−−−|

echo `expr match "$stringZ" 'abc[A−Z]*.2'` # 8
echo `expr "$stringZ" : 'abc[A−Z]*.2'` # 8

Index

expr index $string $substring

Numerical position in $string of first character in $substring that matches.

stringZ=abcABC123ABCabc
echo `expr index "$stringZ" C12` # 6
 # C position.

echo `expr index "$stringZ" 1c` # 3
'c' (in #3 position) matches before '1'.

This is the near equivalent of strchr() in C.

Substring Extraction

${string:position}

Extracts substring from $string at $position.

If the string parameter is "*" or "@", then this extracts the positional parameters, [20] starting at
position.

${string:position:length}

Extracts $length characters of substring from $string at $position.

stringZ=abcABC123ABCabc
0123456789.....
0−based indexing.

Advanced Bash−Scripting Guide

9.2. Manipulating Strings 76

echo ${stringZ:0} # abcABC123ABCabc
echo ${stringZ:1} # bcABC123ABCabc
echo ${stringZ:7} # 23ABCabc

echo ${stringZ:7:3} # 23A
 # Three characters of substring.

If the string parameter is "*" or "@", then this extracts a maximum of length positional
parameters, starting at position.

echo ${*:2} # Echoes second and following positional parameters.
echo ${@:2} # Same as above.

echo ${*:2:3} # Echoes three positional parameters, starting at second.

expr substr $string $position $length

Extracts $length characters from $string starting at $position.

stringZ=abcABC123ABCabc
123456789......
1−based indexing.

echo `expr substr $stringZ 1 2` # ab
echo `expr substr $stringZ 4 3` # ABC

expr match "$string" '\($substring\)'

Extracts $substring at beginning of $string, where $substring is a regular expression.

expr "$string" : '\($substring\)'

Extracts $substring at beginning of $string, where $substring is a regular expression.

stringZ=abcABC123ABCabc

echo `expr match "$stringZ" '\(.[b−c]*[A−Z]..[0−9]\)'` # abcABC1
echo `expr "$stringZ" : '\(.[b−c]*[A−Z]..[0−9]\)'` # abcABC1
Both of the above forms are equivalent.

Substring Removal

${string#substring}

Strips shortest match of $substring from front of $string.

${string##substring}

Strips longest match of $substring from front of $string.

stringZ=abcABC123ABCabc
|−−−−|
|−−−−−−−−−−|

echo ${stringZ#a*C} # 123ABCabc
Strip out shortest match between 'a' and 'C'.

Advanced Bash−Scripting Guide

9.2. Manipulating Strings 77

echo ${stringZ##a*C} # abc
Strip out longest match between 'a' and 'C'.

${string%substring}

Strips shortest match of $substring from back of $string.

${string%%substring}

Strips longest match of $substring from back of $string.

stringZ=abcABC123ABCabc
||
|−−−−−−−−−−−−|

echo ${stringZ%b*c} # abcABC123ABCa
Strip out shortest match between 'b' and 'c', from back of $stringZ.

echo ${stringZ%%b*c} # a
Strip out longest match between 'b' and 'c', from back of $stringZ.

Example 9−9. Converting graphic file formats, with filename change

#!/bin/bash
cvt.sh:
Converts all the MacPaint image files in a directory to "pbm" format.

Uses the "macptopbm" binary from the "netpbm" package,
#+ which is maintained by Brian Henderson (bryanh@giraffe−data.com).
Netpbm is a standard part of most Linux distros.

OPERATION=macptopbm
SUFFIX=pbm # New filename suffix.

if [−n "$1"]
then
 directory=$1 # If directory name given as a script argument...
else
 directory=$PWD # Otherwise use current working directory.
fi

Assumes all files in the target directory are MacPaint image files,
+ with a ".mac" suffix.

for file in $directory/* # Filename globbing.
do
 filename=${file%.*c} # Strip ".mac" suffix off filename
 #+ ('.*c' matches everything
 #+ between '.' and 'c', inclusive).
 $OPERATION $file > $filename.$SUFFIX
 # Redirect conversion to new filename.
 rm −f $file # Delete original files after converting.
 echo "$filename.$SUFFIX" # Log what is happening to stdout.
done

exit 0

Substring Replacement

Advanced Bash−Scripting Guide

9.2. Manipulating Strings 78

${string/substring/replacement}

Replace first match of $substring with $replacement.

${string//substring/replacement}

Replace all matches of $substring with $replacement.

stringZ=abcABC123ABCabc

echo ${stringZ/abc/xyz} # xyzABC123ABCabc
 # Replaces first match of 'abc' with 'xyz'.

echo ${stringZ//abc/xyz} # xyzABC123ABCxyz
 # Replaces all matches of 'abc' with # 'xyz'.

${string/#substring/replacement}

If $substring matches front end of $string, substitute $replacement for $substring.

${string/%substring/replacement}

If $substring matches back end of $string, substitute $replacement for $substring.

stringZ=abcABC123ABCabc

echo ${stringZ/#abc/XYZ} # XYZABC123ABCabc
 # Replaces front−end match of 'abc' with 'xyz'.

echo ${stringZ/%abc/XYZ} # abcABC123ABCXYZ
 # Replaces back−end match of 'abc' with 'xyz'.

9.2.1. Manipulating strings using awk

A Bash script may invoke the string manipulation facilities of awk as an alternative to using its built−in
operations.

Example 9−10. Alternate ways of extracting substrings

#!/bin/bash
substring−extraction.sh

String=23skidoo1
012345678 Bash
123456789 awk
Note different string indexing system:
Bash numbers first character of string as '0'.
Awk numbers first character of string as '1'.

echo ${String:2:4} # position 3 (0−1−2), 4 characters long
 # skid

The awk equivalent of ${string:pos:length} is substr(string,pos,length).
echo | awk '

Advanced Bash−Scripting Guide

9.2.1. Manipulating strings using awk 79

{ print substr("'"${String}"'",3,4) # skid
}
'
Piping an empty "echo" to awk gives it dummy input,
#+ and thus makes it unnecessary to supply a filename.

exit 0

9.2.2. Further Discussion

For more on string manipulation in scripts, refer to Section 9.3 and the relevant section of the expr command
listing. For script examples, see:

Example 12−61.
Example 9−122.
Example 9−133.
Example 9−144.
Example 9−165.

9.3. Parameter Substitution

Manipulating and/or expanding variables

${parameter}

Same as $parameter, i.e., value of the variable parameter. In certain contexts, only the less
ambiguous ${parameter} form works.

May be used for concatenating variables with strings.

your_id=${USER}−on−${HOSTNAME}
echo "$your_id"
#
echo "Old \$PATH = $PATH"
PATH=${PATH}:/opt/bin #Add /opt/bin to $PATH for duration of script.
echo "New \$PATH = $PATH"

${parameter−default}

If parameter not set, use default.

echo ${username−`whoami`}
Echoes the result of `whoami`, if variable $username is still unset.

This is almost equivalent to
${parameter:−default}. The extra : makes a
difference only when parameter has been declared, but is
null.

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 80

#!/bin/bash

username0=
username0 has been declared, but is set to null.
echo "username0 = ${username0−`whoami`}"
Will not echo.

echo "username1 = ${username1−`whoami`}"
username1 has not been declared.
Will echo.

username2=
username2 has been declared, but is set to null.
echo "username2 = ${username2:−`whoami`}"
Will echo because of :− rather than just − in condition test.

exit 0

${parameter=default}, ${parameter:=default}

If parameter not set, set it to default.

Both forms nearly equivalent. The : makes a difference only when $parameter has been declared and
is null, [21] as above.

echo ${username=`whoami`}
Variable "username" is now set to `whoami`.

${parameter+alt_value}, ${parameter:+alt_value}

If parameter set, use alt_value, else use null string.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared and
is null, see below.

echo "###### \${parameter+alt_value} ########"
echo

a=${param1+xyz}
echo "a = $a" # a =

param2=
a=${param2+xyz}
echo "a = $a" # a = xyz

param3=123
a=${param3+xyz}
echo "a = $a" # a = xyz

echo
echo "###### \${parameter:+alt_value} ########"
echo

a=${param4:+xyz}
echo "a = $a" # a =

param5=
a=${param5:+xyz}
echo "a = $a" # a =

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 81

Different result from a=${param5+xyz}

param6=123
a=${param6+xyz}
echo "a = $a" # a = xyz

${parameter?err_msg}, ${parameter:?err_msg}

If parameter set, use it, else print err_msg.

Both forms nearly equivalent. The : makes a difference only when parameter has been declared and
is null, as above.

Example 9−11. Using param substitution and :

#!/bin/bash

Check some of the system's environmental variables.
If, for example, $USER, the name of the person at the console, is not set,
#+ the machine will not recognize you.

: ${HOSTNAME?} ${USER?} ${HOME?} ${MAIL?}
 echo
 echo "Name of the machine is $HOSTNAME."
 echo "You are $USER."
 echo "Your home directory is $HOME."
 echo "Your mail INBOX is located in $MAIL."
 echo
 echo "If you are reading this message,"
 echo "critical environmental variables have been set."
 echo
 echo

−−

The ${variablename?} construction can also check
#+ for variables set within the script.

ThisVariable=Value−of−ThisVariable
Note, by the way, that string variables may be set
#+ to characters disallowed in their names.
: ${ThisVariable?}
echo "Value of ThisVariable is $ThisVariable".
echo
echo

: ${ZZXy23AB?"ZZXy23AB has not been set."}
If ZZXy23AB has not been set,
#+ then the script terminates with an error message.

You can specify the error message.
: ${ZZXy23AB?"ZZXy23AB has not been set."}

Same result with: dummy_variable=${ZZXy23AB?}
dummy_variable=${ZZXy23AB?"ZXy23AB has not been set."}
#
echo ${ZZXy23AB?} >/dev/null

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 82

echo "You will not see this message, because script terminated above."

HERE=0
exit $HERE # Will *not* exit here.

Parameter substitution and/or expansion. The following expressions are the complement to the
match in expr string operations (see Example 12−6). These particular ones are used mostly in parsing file
path names.

Variable length / Substring removal

${#var}

String length (number of characters in $var). For an array, ${#array} is the length of the first
element in the array.

Exceptions:

${#*} and ${#@} give the number of
positional parameters.

♦

For an array, ${#array[*]} and
${#array[@]} give the number of elements
in the array.

♦

Example 9−12. Length of a variable

#!/bin/bash
length.sh

E_NO_ARGS=65

if [$# −eq 0] # Must have command−line args to demo script.
then
 echo "Invoke this script with one or more command−line arguments."
 exit $E_NO_ARGS
fi

var01=abcdEFGH28ij

echo "var01 = ${var01}"
echo "Length of var01 = ${#var01}"

echo "Number of command−line arguments passed to script = ${#@}"
echo "Number of command−line arguments passed to script = ${#*}"

exit 0

${var#pattern}, ${var##pattern}

Remove from $var the shortest/longest part of $pattern that matches the front end of $var.

A usage illustration from Example A−6:

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 83

Function from "days−between.sh" example.
Strips leading zero(s) from argument passed.

strip_leading_zero () # Better to strip possible leading zero(s)
{ # from day and/or month
 val=${1#0} # since otherwise Bash will interpret them
 return $val # as octal values (POSIX.2, sect 2.9.2.1).
}

Another usage illustration:

echo `basename $PWD` # Basename of current working directory.
echo "${PWD##*/}" # Basename of current working directory.
echo
echo `basename $0` # Name of script.
echo $0 # Name of script.
echo "${0##*/}" # Name of script.
echo
filename=test.data
echo "${filename##*.}" # data
 # Extension of filename.

${var%pattern}, ${var%%pattern}

Remove from $var the shortest/longest part of $pattern that matches the back end of $var.

Version 2 of Bash adds additional options.

Example 9−13. Pattern matching in parameter substitution

#!/bin/bash
Pattern matching using the # ## % %% parameter substitution operators.

var1=abcd12345abc6789
pattern1=a*c # * (wild card) matches everything between a − c.

echo
echo "var1 = $var1" # abcd12345abc6789
echo "var1 = ${var1}" # abcd12345abc6789 (alternate form)
echo "Number of characters in ${var1} = ${#var1}"
echo "pattern1 = $pattern1" # a*c (everything between 'a' and 'c')
echo

echo '${var1#$pattern1} =' "${var1#$pattern1}" # d12345abc6789
Shortest possible match, strips out first 3 characters abcd12345abc6789
^^^^^ |−|
echo '${var1##$pattern1} =' "${var1##$pattern1}" # 6789
Longest possible match, strips out first 12 characters abcd12345abc6789
^^^^^ |−−−−−−−−−−|

echo; echo

pattern2=b*9 # everything between 'b' and '9'
echo "var1 = $var1" # Still abcd12345abc6789
echo "pattern2 = $pattern2"
echo

echo '${var1%pattern2} =' "${var1%$pattern2}" # abcd12345a

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 84

Shortest possible match, strips out last 6 characters abcd12345abc6789
^^^^ |−−−−|
echo '${var1%%pattern2} =' "${var1%%$pattern2}" # a
Longest possible match, strips out last 12 characters abcd12345abc6789
^^^^ |−−−−−−−−−−−−−|

Remember, # and ## work from the left end of string,
% and %% work from the right end.

echo

exit 0

Example 9−14. Renaming file extensions:

#!/bin/bash

rfe
−−−

Renaming file extensions.
#
rfe old_extension new_extension
#
Example:
To rename all *.gif files in working directory to *.jpg,
rfe gif jpg

ARGS=2
E_BADARGS=65

if [$# −ne $ARGS]
then
 echo "Usage: `basename $0` old_file_suffix new_file_suffix"
 exit $E_BADARGS
fi

for filename in *.$1
Traverse list of files ending with 1st argument.
do
 mv $filename ${filename%$1}$2
 # Strip off part of filename matching 1st argument,
 # then append 2nd argument.
done

exit 0

Variable expansion / Substring replacement

These constructs have been adopted from ksh.

${var:pos}

Variable var expanded, starting from offset pos.

${var:pos:len}

Expansion to a max of len characters of variable var, from offset pos. See Example A−9 for an

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 85

example of the creative use of this operator.

${var/patt/replacement}

First match of patt, within var replaced with replacement.

If replacement is omitted, then the first match of patt is replaced by nothing, that is, deleted.

${var//patt/replacement}

Global replacement. All matches of patt, within var replaced with replacement.

As above, if replacement is omitted, then all occurrences of patt are replaced by nothing, that
is, deleted.

Example 9−15. Using pattern matching to parse arbitrary strings

#!/bin/bash

var1=abcd−1234−defg
echo "var1 = $var1"

t=${var1#*−*}
echo "var1 (with everything, up to and including first − stripped out) = $t"
t=${var1#*−} works just the same,
#+ since # matches the shortest string,
#+ and * matches everything preceding, including an empty string.
(Thanks, S. C. for pointing this out.)

t=${var1##*−*}
echo "If var1 contains a \"−\", returns empty string... var1 = $t"

t=${var1%*−*}
echo "var1 (with everything from the last − on stripped out) = $t"

echo

−−−
path_name=/home/bozo/ideas/thoughts.for.today
−−−
echo "path_name = $path_name"
t=${path_name##/*/}
echo "path_name, stripped of prefixes = $t"
Same effect as t=`basename $path_name` in this particular case.
t=${path_name%/}; t=${t##*/} is a more general solution,
#+ but still fails sometimes.
If $path_name ends with a newline, then `basename $path_name` will not work,
#+ but the above expression will.
(Thanks, S.C.)

t=${path_name%/*.*}
Same effect as t=`dirname $path_name`
echo "path_name, stripped of suffixes = $t"
These will fail in some cases, such as "../", "/foo////", # "foo/", "/".
Removing suffixes, especially when the basename has no suffix,
#+ but the dirname does, also complicates matters.

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 86

(Thanks, S.C.)

echo

t=${path_name:11}
echo "$path_name, with first 11 chars stripped off = $t"
t=${path_name:11:5}
echo "$path_name, with first 11 chars stripped off, length 5 = $t"

echo

t=${path_name/bozo/clown}
echo "$path_name with \"bozo\" replaced by \"clown\" = $t"
t=${path_name/today/}
echo "$path_name with \"today\" deleted = $t"
t=${path_name//o/O}
echo "$path_name with all o's capitalized = $t"
t=${path_name//o/}
echo "$path_name with all o's deleted = $t"

exit 0

${var/#patt/replacement}

If prefix of var matches replacement, then substitute replacement for patt.

${var/%patt/replacement}

If suffix of var matches replacement, then substitute replacement for patt.

Example 9−16. Matching patterns at prefix or suffix of string

#!/bin/bash
Pattern replacement at prefix / suffix of string.

v0=abc1234zip1234abc # Original variable.
echo "v0 = $v0" # abc1234zip1234abc
echo

Match at prefix (beginning) of string.
v1=${v0/#abc/ABCDEF} # abc1234zip1234abc
 # |−|
echo "v1 = $v1" # ABCDE1234zip1234abc
 # |−−−|

Match at suffix (end) of string.
v2=${v0/%abc/ABCDEF} # abc1234zip123abc
 # |−|
echo "v2 = $v2" # abc1234zip1234ABCDEF
 # |−−−−|

echo

−−
Must match at beginning / end of string,
#+ otherwise no replacement results.
−−
v3=${v0/#123/000} # Matches, but not at beginning.
echo "v3 = $v3" # abc1234zip1234abc

Advanced Bash−Scripting Guide

9.2.2. Further Discussion 87

 # NO REPLACEMENT.
v4=${v0/%123/000} # Matches, but not at end.
echo "v4 = $v4" # abc1234zip1234abc
 # NO REPLACEMENT.

exit 0

${!varprefix*}, ${!varprefix@}

Matches all previously declared variables beginning with varprefix.

xyz23=whatever
xyz24=

a=${!xyz*} # Expands to names of declared variables beginning with "xyz".
echo "a = $a" # a = xyz23 xyz24
a=${!xyz@} # Same as above.
echo "a = $a" # a = xyz23 xyz24

Bash, version 2.04, adds this feature.

9.4. Typing variables: declare or typeset

The declare or typeset builtins (they are exact synonyms) permit restricting the properties of variables. This
is a very weak form of the typing available in certain programming languages. The declare command is
specific to version 2 or later of Bash. The typeset command also works in ksh scripts.

declare/typeset options

−r readonly

declare −r var1

(declare −r var1 works the same as readonly var1)

This is the rough equivalent of the C const type qualifier. An attempt to change the value of a
readonly variable fails with an error message.

−i integer

declare −i number
The script will treat subsequent occurrences of "number" as an integer.

number=3
echo "number = $number" # number = 3

number=three
echo "number = $number" # number = 0
Tries to evaluate "three" as an integer.

Note that certain arithmetic operations are permitted for declared integer variables without the need
for expr or let.

−a array

declare −a indices

Advanced Bash−Scripting Guide

9.4. Typing variables: declare or typeset 88

The variable indices will be treated as an array.

−f functions

declare −f

A declare −f line with no arguments in a script causes a listing of all the functions previously
defined in that script.

declare −f function_name

A declare −f function_name in a script lists just the function named.

−x export

declare −x var3

This declares a variable as available for exporting outside the environment of the script itself.

var=$value

declare −x var3=373

The declare command permits assigning a value to a variable in the same statement as setting its
properties.

Example 9−17. Using declare to type variables

#!/bin/bash

func1 ()
{
echo This is a function.
}

declare −f # Lists the function above.

echo

declare −i var1 # var1 is an integer.
var1=2367
echo "var1 declared as $var1"
var1=var1+1 # Integer declaration eliminates the need for 'let'.
echo "var1 incremented by 1 is $var1."
Attempt to change variable declared as integer
echo "Attempting to change var1 to floating point value, 2367.1."
var1=2367.1 # Results in error message, with no change to variable.
echo "var1 is still $var1"

echo

declare −r var2=13.36 # 'declare' permits setting a variable property
 #+ and simultaneously assigning it a value.
echo "var2 declared as $var2" # Attempt to change readonly variable.
var2=13.37 # Generates error message, and exit from script.

Advanced Bash−Scripting Guide

9.4. Typing variables: declare or typeset 89

echo "var2 is still $var2" # This line will not execute.

exit 0 # Script will not exit here.

9.5. Indirect References to Variables

Assume that the value of a variable is the name of a second variable. Is it somehow possible to retrieve the
value of this second variable from the first one? For example, if a=letter_of_alphabet and
letter_of_alphabet=z, can a reference to a return z? This can indeed be done, and it is called an
indirect reference. It uses the unusual eval var1=\$$var2 notation.

Example 9−18. Indirect References

#!/bin/bash
Indirect variable referencing.

a=letter_of_alphabet
letter_of_alphabet=z

echo

Direct reference.
echo "a = $a"

Indirect reference.
eval a=\$$a
echo "Now a = $a"

echo

Now, let's try changing the second order reference.

t=table_cell_3
table_cell_3=24
echo "\"table_cell_3\" = $table_cell_3"
echo −n "dereferenced \"t\" = "; eval echo \$$t
In this simple case,
eval t=\$$t; echo "\"t\" = $t"
also works (why?).

echo

t=table_cell_3
NEW_VAL=387
table_cell_3=$NEW_VAL
echo "Changing value of \"table_cell_3\" to $NEW_VAL."
echo "\"table_cell_3\" now $table_cell_3"
echo −n "dereferenced \"t\" now "; eval echo \$$t
"eval" takes the two arguments "echo" and "\$$t" (set equal to $table_cell_3)
echo

(Thanks, S.C., for clearing up the above behavior.)

Advanced Bash−Scripting Guide

9.5. Indirect References to Variables 90

Another method is the ${!t} notation, discussed in "Bash, version 2" section.
See also example "ex78.sh".

exit 0

Example 9−19. Passing an indirect reference to awk

#!/bin/bash

Another version of the "column totaler" script
that adds up a specified column (of numbers) in the target file.
This uses indirect references.

ARGS=2
E_WRONGARGS=65

if [$# −ne "$ARGS"] # Check for proper no. of command line args.
then
 echo "Usage: `basename $0` filename column−number"
 exit $E_WRONGARGS
fi

filename=$1
column_number=$2

#===== Same as original script, up to this point =====#

A multi−line awk script is invoked by awk ' '

Begin awk script.
−−
awk "

{ total += \$${column_number} # indirect reference
}
END {
 print total
 }

 " "$filename"
−−
End awk script.

Indirect variable reference avoids the hassles
of referencing a shell variable within the embedded awk script.
Thanks, Stephane Chazelas.

exit 0

This method of indirect referencing is a bit tricky. If the
second order variable changes its value, then the the first
order variable must be properly dereferenced (as in the above
example). Fortunately, the ${!variable} notation
introduced with version 2 of Bash (see Example 35−2) makes

Advanced Bash−Scripting Guide

9.5. Indirect References to Variables 91

indirect referencing more intuitive.

9.6. $RANDOM: generate random integer

$RANDOM is an internal Bash function (not a constant) that returns a pseudorandom integer in the range 0 −
32767. $RANDOM should not be used to generate an encryption key.

Example 9−20. Generating random numbers

#!/bin/bash

$RANDOM returns a different random integer at each invocation.
Nominal range: 0 − 32767 (signed 16−bit integer).

MAXCOUNT=10
count=1

echo
echo "$MAXCOUNT random numbers:"
echo "−−−−−−−−−−−−−−−−−"
while ["$count" −le $MAXCOUNT] # Generate 10 ($MAXCOUNT) random integers.
do
 number=$RANDOM
 echo $number
 let "count += 1" # Increment count.
done
echo "−−−−−−−−−−−−−−−−−"

If you need a random int within a certain range, use the 'modulo' operator.
This returns the remainder of a division operation.

RANGE=500

echo

number=$RANDOM
let "number %= $RANGE"
echo "Random number less than $RANGE −−− $number"

echo

If you need a random int greater than a lower bound,
then set up a test to discard all numbers below that.

FLOOR=200

number=0 #initialize
while ["$number" −le $FLOOR]
do
 number=$RANDOM
done
echo "Random number greater than $FLOOR −−− $number"
echo

May combine above two techniques to retrieve random number between two limits.

Advanced Bash−Scripting Guide

9.6. $RANDOM: generate random integer 92

number=0 #initialize
while ["$number" −le $FLOOR]
do
 number=$RANDOM
 let "number %= $RANGE" # Scales $number down within $RANGE.
done
echo "Random number between $FLOOR and $RANGE −−− $number"
echo

Generate binary choice, that is, "true" or "false" value.
BINARY=2
number=$RANDOM
T=1

let "number %= $BINARY"
let "number >>= 14" gives a better random distribution
(right shifts out everything except last binary digit).
if ["$number" −eq $T]
then
 echo "TRUE"
else
 echo "FALSE"
fi

echo

May generate toss of the dice.
SPOTS=7 # Modulo 7 gives range 0 − 6.
DICE=2
ZERO=0
die1=0
die2=0

Tosses each die separately, and so gives correct odds.

 while ["$die1" −eq $ZERO] # Can't have a zero come up.
 do
 let "die1 = $RANDOM % $SPOTS" # Roll first one.
 done

 while ["$die2" −eq $ZERO]
 do
 let "die2 = $RANDOM % $SPOTS" # Roll second one.
 done

let "throw = $die1 + $die2"
echo "Throw of the dice = $throw"
echo

exit 0

Just how random is RANDOM? The best way to test this is to write a script that tracks the distribution of
"random" numbers generated by RANDOM. Let's roll a RANDOM die a few times...

Example 9−21. Rolling the die with RANDOM

Advanced Bash−Scripting Guide

9.6. $RANDOM: generate random integer 93

#!/bin/bash
How random is RANDOM?

RANDOM=$$ # Reseed the random number generator using script process ID.

PIPS=6 # A die has 6 pips.
MAXTHROWS=600 # Increase this, if you have nothing better to do with your time.
throw=0 # Throw count.

zeroes=0 # Must initialize counts to zero.
ones=0 # since an uninitialized variable is null, not zero.
twos=0
threes=0
fours=0
fives=0
sixes=0

print_result ()
{
echo
echo "ones = $ones"
echo "twos = $twos"
echo "threes = $threes"
echo "fours = $fours"
echo "fives = $fives"
echo "sixes = $sixes"
echo
}

update_count()
{
case "$1" in
 0) let "ones += 1";; # Since die has no "zero", this corresponds to 1.
 1) let "twos += 1";; # And this to 2, etc.
 2) let "threes += 1";;
 3) let "fours += 1";;
 4) let "fives += 1";;
 5) let "sixes += 1";;
esac
}

echo

while ["$throw" −lt "$MAXTHROWS"]
do
 let "die1 = RANDOM % $PIPS"
 update_count $die1
 let "throw += 1"
done

print_result

The scores should distribute fairly evenly, assuming RANDOM is fairly random.
With $MAXTHROWS at 600, all should cluster around 100, plus−or−minus 20 or so.
#
Keep in mind that RANDOM is a pseudorandom generator,
and not a spectacularly good one at that.

Exercise for the reader (easy):
Rewrite this script to flip a coin 1000 times.
Choices are "HEADS" or "TAILS".

Advanced Bash−Scripting Guide

9.6. $RANDOM: generate random integer 94

exit 0

As we have seen in the last example, it is best to "reseed" the RANDOM generator each time it is invoked.
Using the same seed for RANDOM repeats the same series of numbers. (This mirrors the behavior of the
random() function in C.)

Example 9−22. Reseeding RANDOM

#!/bin/bash
seeding−random.sh: Seeding the RANDOM variable.

MAXCOUNT=25 # How many numbers to generate.

random_numbers ()
{
count=0
while ["$count" −lt "$MAXCOUNT"]
do
 number=$RANDOM
 echo −n "$number "
 let "count += 1"
done
}

echo; echo

RANDOM=1 # Setting RANDOM seeds the random number generator.
random_numbers

echo; echo

RANDOM=1 # Same seed for RANDOM...
random_numbers # ...reproduces the exact same number series.

echo; echo

RANDOM=2 # Trying again, but with a different seen...
random_numbers # gives a different number series.

echo; echo

RANDOM=$$ seeds RANDOM from process id of script.
It is also possible to seed RANDOM from 'time' or 'date'.

Getting fancy...
SEED=$(head −1 /dev/urandom | od −N 1 | awk '{ print $2 }')
Pseudo−random output fetched from /dev/urandom (system pseudo−random "device"),
then converted to line of printable (octal) numbers by "od",
finally "awk" retrieves just one number for SEED.
RANDOM=$SEED
random_numbers

echo; echo

exit 0

Advanced Bash−Scripting Guide

9.6. $RANDOM: generate random integer 95

The /dev/urandom device−file provides a means of generating much more
"random" pseudorandom numbers than the $RANDOM variable. dd if=/dev/urandom
of=targetfile bs=1 count=XX creates a file of well−scattered pseudorandom numbers.
However, assigning these numbers to a variable in a script requires a workaround, such as filtering
through od (as in above example) or using dd (see Example 12−34).

There are also other means of generating pseudorandom numbers in a script. Awk provides a
convenient means of doing this.

Example 9−23. Pseudorandom numbers, using awk

#!/bin/bash
random2.sh: Returns a pseudorandom number in the range 0 − 1.
Uses the awk rand() function.

AWKSCRIPT=' { srand(); print rand() } '
Command(s) / parameters passed to awk
Note that srand() reseeds awk's random number generator.

echo −n "Random number between 0 and 1 = "
echo | awk "$AWKSCRIPT"

exit 0

Exercises for the reader:
−−−−−−−−−−−−−−−−−−−−−−−−−

1] Using a loop construct, print out 10 different random numbers.
(Hint: you must reseed the "srand()" function with a different seed
in each pass through the loop. What happens if you fail to do this?)

2] Using an integer multiplier as a scaling factor, generate random numbers
in the range between 10 and 100.

3] Same as exercise #2, above, but generate random integers this time.

9.7. The Double Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its simplest
form, a=$((5 + 3)) would set "a" to "5 + 3", or 8. However, this double parentheses construct is also
a mechanism for allowing C−type manipulation of variables in Bash.

Example 9−24. C−type manipulation of variables

#!/bin/bash
Manipulating a variable, C−style, using the ((...)) construct.

echo

Advanced Bash−Scripting Guide

9.7. The Double Parentheses Construct 96

((a = 23)) # Setting a value, C−style, with spaces on both sides of the "=".
echo "a (initial value) = $a"

((a++)) # Post−increment 'a', C−style.
echo "a (after a++) = $a"

((a−−)) # Post−decrement 'a', C−style.
echo "a (after a−−) = $a"

((++a)) # Pre−increment 'a', C−style.
echo "a (after ++a) = $a"

((−−a)) # Pre−decrement 'a', C−style.
echo "a (after −−a) = $a"

echo

((t = a<45?7:11)) # C−style trinary operator.
echo "If a < 45, then t = 7, else t = 11."
echo "t = $t " # Yes!

echo

−−−−−−−−−−−−−−−−−
Easter Egg alert!
−−−−−−−−−−−−−−−−−
Chet Ramey apparently snuck a bunch of undocumented C−style constructs
#+ into Bash (actually adapted from ksh, pretty much).
In the Bash docs, Ramey calls ((...)) shell arithmetic,
#+ but it goes far beyond that.
Sorry, Chet, the secret is now out.

See also "for" and "while" loops using the ((...)) construct.

These work only with Bash, version 2.04 or later.

exit 0

See also Example 10−11.

Advanced Bash−Scripting Guide

9.7. The Double Parentheses Construct 97

Chapter 10. Loops and Branches
Operations on code blocks are the key to structured, organized shell scripts. Looping and branching
constructs provide the tools for accomplishing this.

10.1. Loops

A loop is a block of code that iterates (repeats) a list of commands as long as the loop control condition is
true.

for loops

for (in)

This is the basic looping construct. It differs significantly from its C counterpart.

for arg in [list]
do
 command...
done

During each pass through the loop, arg takes
on the value of each variable in the list.

for arg in "$var1" "$var2" "$var3" ... "$varN"
In pass 1 of the loop, $arg = $var1
In pass 2 of the loop, $arg = $var2
In pass 3 of the loop, $arg = $var3
...
In pass N of the loop, $arg = $varN

Arguments in [list] quoted to prevent possible word splitting.

The argument list may contain wild cards.

If do is on same line as for, there needs to be a semicolon after list.

for arg in [list] ; do

Example 10−1. Simple for loops

#!/bin/bash
List the planets.

for planet in Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto
do
 echo $planet
done

Chapter 10. Loops and Branches 98

echo

Entire 'list' enclosed in quotes creates a single variable.
for planet in "Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto"
do
 echo $planet
done

exit 0

Each [list] element may contain multiple
parameters. This is useful when processing
parameters in groups. In such cases, use the
set command (see Example 11−10) to force parsing
of each [list] element and assignment of each
component to the positional parameters.

Example 10−2. for loop with two parameters in each [list] element

#!/bin/bash
Planets revisited.

Associate the name of each planet with its distance from the sun.

for planet in "Mercury 36" "Venus 67" "Earth 93" "Mars 142" "Jupiter 483"
do
 set −− $planet # Parses variable "planet" and sets positional parameters.
 # the "−−" prevents nasty surprises if $planet is null or begins with a dash.

 # May need to save original positional parameters, since they get overwritten.
 # One way of doing this is to use an array,
 # original_params=("$@")

 echo "$1 $2,000,000 miles from the sun"
 #−−−−−−−two tabs−−−concatenate zeroes onto parameter $2
done

(Thanks, S.C., for additional clarification.)

exit 0

A variable may supply the [list] in a for loop.

Example 10−3. Fileinfo: operating on a file list contained in a variable

#!/bin/bash
fileinfo.sh

FILES="/usr/sbin/privatepw
/usr/sbin/pwck
/usr/sbin/go500gw
/usr/bin/fakefile
/sbin/mkreiserfs
/sbin/ypbind" # List of files you are curious about.
 # Threw in a dummy file, /usr/bin/fakefile.

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 99

echo

for file in $FILES
do

 if [! −e "$file"] # Check if file exists.
 then
 echo "$file does not exist."; echo
 continue # On to next.
 fi

 ls −l $file | awk '{ print $9 " file size: " $5 }' # Print 2 fields.
 whatis `basename $file` # File info.
 echo
done

exit 0

The [list] in a for loop may contain filename globbing, that is, using wildcards for filename
expansion.

Example 10−4. Operating on files with a for loop

#!/bin/bash
list−glob.sh: Generating [list] in a for−loop using "globbing".

echo

for file in *
do
 ls −l "$file" # Lists all files in $PWD (current directory).
 # Recall that the wild card character "*" matches everything,
 # however, in "globbing", it doesn't match dot−files.

 # If the pattern matches no file, it is expanded to itself.
 # To prevent this, set the nullglob option
 # (shopt −s nullglob).
 # Thanks, S.C.
done

echo; echo

for file in [jx]*
do
 rm −f $file # Removes only files beginning with "j" or "x" in $PWD.
 echo "Removed file \"$file\"".
done

echo

exit 0

Omitting the in [list] part of a for loop causes the loop to operate on $@, the list of arguments
given on the command line to the script. A particularly clever illustration of this is Example A−11.

Example 10−5. Missing in [list] in a for loop

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 100

#!/bin/bash

Invoke both with and without arguments, and see what happens.

for a
do
 echo −n "$a "
done

The 'in list' missing, therefore the loop operates on '$@'
(command−line argument list, including whitespace).

echo

exit 0

It is possible to use command substitution to generate the [list] in a for loop. See also Example
12−32, Example 10−9 and Example 12−29.

Example 10−6. Generating the [list] in a for loop with command substitution

#!/bin/bash
A for−loop with [list] generated by command substitution.

NUMBERS="9 7 3 8 37.53"

for number in `echo $NUMBERS` # for number in 9 7 3 8 37.53
do
 echo −n "$number "
done

echo
exit 0

This is a somewhat more complex example of using command substitution to create the [list].

Example 10−7. A grep replacement for binary files

#!/bin/bash
bin−grep.sh: Locates matching strings in a binary file.

A "grep" replacement for binary files.
Similar effect to "grep −a"

E_BADARGS=65
E_NOFILE=66

if [$# −ne 2]
then
 echo "Usage: `basename $0` string filename"
 exit $E_BADARGS
fi

if [! −f "$2"]
then
 echo "File \"$2\" does not exist."
 exit $E_NOFILE

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 101

fi

for word in $(strings "$2" | grep "$1")
The "strings" command lists strings in binary files.
Output then piped to "grep", which tests for desired string.
do
 echo $word
done

As S.C. points out, the above for−loop could be replaced with the simpler
strings "$2" | grep "$1" | tr −s "$IFS" '[\n*]'

Try something like "./bin−grep.sh mem /bin/ls" to exercise this script.

exit 0

Here is yet another example of the [list] resulting from command substitution.

Example 10−8. Checking all the binaries in a directory for authorship

#!/bin/bash
findstring.sh: Find a particular string in binaries in a specified directory.

directory=/usr/bin/
fstring="Free Software Foundation" # See which files come from the FSF.

for file in $(find $directory −type f −name '*' | sort)
do
 strings −f $file | grep "$fstring" | sed −e "s%$directory%%"
 # In the "sed" expression, it is necessary to substitute for the normal "/" delimiter
 # because "/" happens to be one of the characters filtered out.
 # Failure to do so gives an error message (try it).
done

exit 0

Exercise for the reader (easy):
Convert this script to taking command−line parameters for $directory and $fstring.

The output of a for loop may be piped to a command or commands.

Example 10−9. Listing the symbolic links in a directory

#!/bin/bash
symlinks.sh: Lists symbolic links in a directory.

ARGS=1 # Expect one command−line argument.

if [$# −ne "$ARGS"] # If not 1 arg...
then
 directory=`pwd` # current working directory
else
 directory=$1
fi

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 102

echo "symbolic links in directory \"$directory\""

for file in "$(find $directory −type l)" # −type l = symbolic links
do
 echo "$file"
done | sort # Otherwise file list is unsorted.

As Dominik 'Aeneas' Schnitzer points out,
#+ failing to quote $(find $directory −type l)
#+ will choke on filenames with embedded whitespace.

exit 0

The stdout of a loop may be redirected to a file, as this slight modification to the previous example
shows.

Example 10−10. Symbolic links in a directory, saved to a file

#!/bin/bash
symlinks.sh: Lists symbolic links in a directory.

ARGS=1 # Expect one command−line argument.
OUTFILE=symlinks.list # save file

if [$# −ne "$ARGS"] # If not 1 arg...
then
 directory=`pwd` # current working directory
else
 directory=$1
fi

echo "symbolic links in directory \"$directory\""

for file in "$(find $directory −type l)" # −type l = symbolic links
do
 echo "$file"
done | sort > "$OUTFILE" # stdout of loop
^^^^^^^^^^^^ redirected to save file.

exit 0

There is an alternative syntax to a for loop that will look very familiar to C programmers. This
requires double parentheses.

Example 10−11. A C−like for loop

#!/bin/bash
Two ways to count up to 10.

echo

Standard syntax.
for a in 1 2 3 4 5 6 7 8 9 10
do
 echo −n "$a "
done

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 103

echo; echo

+==+

Now, let's do the same, using C−like syntax.

LIMIT=10

for ((a=1; a <= LIMIT ; a++)) # Double parentheses, and "LIMIT" with no "$".
do
 echo −n "$a "
done # A construct borrowed from 'ksh93'.

echo; echo

+===+

Let's use the C "comma operator" to increment two variables simultaneously.

for ((a=1, b=1; a <= LIMIT ; a++, b++)) # The comma chains together operations.
do
 echo −n "$a−$b "
done

echo; echo

exit 0

See also Example 26−6 and Example 26−7.

−−−

Now, for an example from "real life".

Example 10−12. Using efax in batch mode

#!/bin/bash

EXPECTED_ARGS=2
E_BADARGS=65

if [$# −ne $EXPECTED_ARGS]
Check for proper no. of command line args.
then
 echo "Usage: `basename $0` phone# text−file"
 exit $E_BADARGS
fi

if [! −f "$2"]
then
 echo "File $2 is not a text file"
 exit $E_BADARGS
fi

fax make $2 # Create fax formatted files from text files.

for file in $(ls $2.0*) # Concatenate the converted files.

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 104

 # Uses wild card in variable list.
do
 fil="$fil $file"
done

efax −d /dev/ttyS3 −o1 −t "T$1" $fil # Do the work.

As S.C. points out, the for−loop can be eliminated with
efax −d /dev/ttyS3 −o1 −t "T$1" $2.0*
but it's not quite as instructive [grin].

exit 0

while

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
true (returns a 0 exit status).

while [condition]
do
 command...
done

As is the case with for/in loops, placing the do on the same line as the condition test requires a
semicolon.

while [condition] ; do

Note that certain specialized while loops, as, for example, a getopts construct, deviate somewhat
from the standard template given here.

Example 10−13. Simple while loop

#!/bin/bash

var0=0
LIMIT=10

while ["$var0" −lt "$LIMIT"]
do
 echo −n "$var0 " # −n suppresses newline.
 var0=`expr $var0 + 1` # var0=$(($var0+1)) also works.
done

echo

exit 0

Example 10−14. Another while loop

#!/bin/bash

echo

while ["$var1" != "end"] # while test "$var1" != "end"

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 105

do # also works.
 echo "Input variable #1 (end to exit) "
 read var1 # Not 'read $var1' (why?).
 echo "variable #1 = $var1" # Need quotes because of "#".
 # If input is 'end', echoes it here.
 # Does not test for termination condition until top of loop.
 echo
done

exit 0

A while loop may have multiple conditions. Only the final condition determines when the loop
terminates. This necessitates a slightly different loop syntax, however.

Example 10−15. while loop with multiple conditions

#!/bin/bash

var1=unset
previous=$var1

while echo "previous−variable = $previous"
 echo
 previous=$var1
 ["$var1" != end] # Keeps track of what "var1" was previously.
 # Four conditions on "while", but only last one controls loop.
 # The *last* exit status is the one that counts.
do
echo "Input variable #1 (end to exit) "
 read var1
 echo "variable #1 = $var1"
done

Try to figure out how this all works.
It's a wee bit tricky.

exit 0

As with a for loop, a while loop may employ C−like syntax by using the double parentheses
construct (see also Example 9−24).

Example 10−16. C−like syntax in a while loop

#!/bin/bash
wh−loopc.sh: Count to 10 in a "while" loop.

LIMIT=10
a=1

while ["$a" −le $LIMIT]
do
 echo −n "$a "
 let "a+=1"
done # No surprises, so far.

echo; echo

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 106

+===+

Now, repeat with C−like syntax.

((a = 1)) # a=1
Double parentheses permit space when setting a variable, as in C.

while ((a <= LIMIT)) # Double parentheses, and no "$" preceding variables.
do
 echo −n "$a "
 ((a += 1)) # let "a+=1"
 # Yes, indeed.
 # Double parentheses permit incrementing a variable with C−like syntax.
done

echo

Now, C programmers can feel right at home in Bash.

exit 0

A while loop may have its stdin redirected to
a file by a < at its end.

until

This construct tests for a condition at the top of a loop, and keeps looping as long as that condition is
false (opposite of while loop).

until [condition−is−true]
do
 command...
done

Note that an until loop tests for the terminating condition at the top of the loop, differing from a
similar construct in some programming languages.

As is the case with for/in loops, placing the do on the same line as the condition test requires a
semicolon.

until [condition−is−true] ; do

Example 10−17. until loop

#!/bin/bash

until ["$var1" = end] # Tests condition here, at top of loop.
do
 echo "Input variable #1 "
 echo "(end to exit)"
 read var1
 echo "variable #1 = $var1"
done

exit 0

Advanced Bash−Scripting Guide

Chapter 10. Loops and Branches 107

10.2. Nested Loops

A nested loop is a loop within a loop, an inner loop within the body of an outer one. What happens is that the
first pass of the outer loop triggers the inner loop, which executes to completion. Then the second pass of the
outer loop triggers the inner loop again. This repeats until the outer loop finishes. Of course, a break within
either the inner or outer loop may interrupt this process.

Example 10−18. Nested Loop

#!/bin/bash
Nested "for" loops.

outer=1 # Set outer loop counter.

Beginning of outer loop.
for a in 1 2 3 4 5
do
 echo "Pass $outer in outer loop."
 echo "−−−−−−−−−−−−−−−−−−−−−"
 inner=1 # Reset inner loop counter.

 # Beginning of inner loop.
 for b in 1 2 3 4 5
 do
 echo "Pass $inner in inner loop."
 let "inner+=1" # Increment inner loop counter.
 done
 # End of inner loop.

 let "outer+=1" # Increment outer loop counter.
 echo # Space between output in pass of outer loop.
done
End of outer loop.

exit 0

See Example 26−4 for an illustration of nested "while" loops, and Example 26−5 to see a "while" loop nested
inside an "until" loop.

10.3. Loop Control

Commands Affecting Loop Behavior

break, continue

The break and continue loop control commands [22] correspond exactly to their counterparts in
other programming languages. The break command terminates the loop (breaks out of it), while
continue causes a jump to the next iteration of the loop, skipping all the remaining commands in that
particular loop cycle.

Advanced Bash−Scripting Guide

10.2. Nested Loops 108

Example 10−19. Effects of break and continue in a loop

#!/bin/bash

LIMIT=19 # Upper limit

echo
echo "Printing Numbers 1 through 20 (but not 3 and 11)."

a=0

while [$a −le "$LIMIT"]
do
 a=$(($a+1))

 if ["$a" −eq 3] || ["$a" −eq 11] # Excludes 3 and 11
 then
 continue # Skip rest of this particular loop iteration.
 fi

 echo −n "$a "
done

Exercise for the reader:
Why does loop print up to 20?

echo; echo

echo Printing Numbers 1 through 20, but something happens after 2.

##

Same loop, but substituting 'break' for 'continue'.

a=0

while ["$a" −le "$LIMIT"]
do
 a=$(($a+1))

 if ["$a" −gt 2]
 then
 break # Skip entire rest of loop.
 fi

 echo −n "$a "
done

echo; echo; echo

exit 0

The break command may optionally take a parameter. A plain break terminates only the innermost
loop in which it is embedded, but a break N breaks out of N levels of loop.

Example 10−20. Breaking out of multiple loop levels

#!/bin/bash
break−levels.sh: Breaking out of loops.

Advanced Bash−Scripting Guide

10.2. Nested Loops 109

"break N" breaks out of N level loops.

for outerloop in 1 2 3 4 5
do
 echo −n "Group $outerloop: "

 for innerloop in 1 2 3 4 5
 do
 echo −n "$innerloop "

 if ["$innerloop" −eq 3]
 then
 break # Try break 2 to see what happens.
 # ("Breaks" out of both inner and outer loops.)
 fi
 done

 echo
done

echo

exit 0

The continue command, similar to break, optionally takes a parameter. A plain continue cuts short
the current iteration within its loop and begins the next. A continue N terminates all remaining
iterations at its loop level and continues with the next iteration at the loop N levels above.

Example 10−21. Continuing at a higher loop level

#!/bin/bash
The "continue N" command, continuing at the Nth level loop.

for outer in I II III IV V # outer loop
do
 echo; echo −n "Group $outer: "

 for inner in 1 2 3 4 5 6 7 8 9 10 # inner loop
 do

 if ["$inner" −eq 7]
 then
 continue 2 # Continue at loop on 2nd level, that is "outer loop".
 # Replace above line with a simple "continue"
 # to see normal loop behavior.
 fi

 echo −n "$inner " # 8 9 10 will never echo.
 done

done

echo; echo

Exercise for the reader:
Come up with a meaningful use for "continue N" in a script.

exit 0

Advanced Bash−Scripting Guide

10.2. Nested Loops 110

The continue N construct is difficult to
understand and tricky to use in any meaningful
context. It is probably best avoided.

10.4. Testing and Branching

The case and select constructs are technically not loops, since they do not iterate the execution of a code
block. Like loops, however, they direct program flow according to conditions at the top or bottom of the
block.

Controlling program flow in a code block

case (in) / esac

The case construct is the shell equivalent of switch in C/C++. It permits branching to one of a
number of code blocks, depending on condition tests. It serves as a kind of shorthand for multiple
if/then/else statements and is an appropriate tool for creating menus.

case "$variable" in

 "$condition1")
command...

 ;;

 "$condition2")
command...

 ;;

esac

Quoting the variables is not mandatory,
since word splitting does not take place.

♦

Each test line ends with a right paren). ♦
Each condition block ends with a
double semicolon ;;.

♦

The entire case block terminates with an
esac (case spelled backwards).

♦

Example 10−22. Using case

#!/bin/bash

echo; echo "Hit a key, then hit return."
read Keypress

case "$Keypress" in
 [a−z]) echo "Lowercase letter";;
 [A−Z]) echo "Uppercase letter";;
 [0−9]) echo "Digit";;

Advanced Bash−Scripting Guide

10.4. Testing and Branching 111

 *) echo "Punctuation, whitespace, or other";;
esac # Allows ranges of characters in [square brackets].

Exercise for the reader:
As the script stands, # it accepts a single keystroke, then terminates.
Change the script so it accepts continuous input,
reports on each keystroke, and terminates only when "X" is hit.
Hint: enclose everything in a "while" loop.

exit 0

Example 10−23. Creating menus using case

#!/bin/bash

Crude address database

clear # Clear the screen.

echo " Contact List"
echo " −−−−−−− −−−−"
echo "Choose one of the following persons:"
echo
echo "[E]vans, Roland"
echo "[J]ones, Mildred"
echo "[S]mith, Julie"
echo "[Z]ane, Morris"
echo

read person

case "$person" in
Note variable is quoted.

 "E" | "e")
 # Accept upper or lowercase input.
 echo
 echo "Roland Evans"
 echo "4321 Floppy Dr."
 echo "Hardscrabble, CO 80753"
 echo "(303) 734−9874"
 echo "(303) 734−9892 fax"
 echo "revans@zzy.net"
 echo "Business partner & old friend"
 ;;
Note double semicolon to terminate
each option.

 "J" | "j")
 echo
 echo "Mildred Jones"
 echo "249 E. 7th St., Apt. 19"
 echo "New York, NY 10009"
 echo "(212) 533−2814"
 echo "(212) 533−9972 fax"
 echo "milliej@loisaida.com"
 echo "Girlfriend"
 echo "Birthday: Feb. 11"
 ;;

Add info for Smith & Zane later.

Advanced Bash−Scripting Guide

10.4. Testing and Branching 112

 *)
 # Default option.
 # Empty input (hitting RETURN) fits here, too.
 echo
 echo "Not yet in database."
 ;;

esac

echo

Exercise for the reader:
Change the script so it accepts continuous input,
instead of terminating after displaying just one address.

exit 0

An exceptionally clever use of case involves testing for command−line parameters.

#! /bin/bash

case "$1" in
"") echo "Usage: ${0##*/} <filename>"; exit 65;; # No command−line parameters,
 # or first parameter empty.
Note that ${0##*/} is ${var##pattern} param substitution. Net result is $0.

−*) FILENAME=./$1;; # If filename passed as argument ($1) starts with a dash,
 # replace it with ./$1
 # so further commands don't interpret it as an option.

*) FILENAME=$1;; # Otherwise, $1.
esac

Example 10−24. Using command substitution to generate the case variable

#!/bin/bash
Using command substitution to generate a "case" variable.

case $(arch) in # "arch" returns machine architecture.
i386) echo "80386−based machine";;
i486) echo "80486−based machine";;
i586) echo "Pentium−based machine";;
i686) echo "Pentium2+−based machine";;
*) echo "Other type of machine";;
esac

exit 0

A case construct can filter strings for globbing patterns.

Example 10−25. Simple string matching

#!/bin/bash
match−string.sh: simple string matching

match_string ()
{

Advanced Bash−Scripting Guide

10.4. Testing and Branching 113

 MATCH=0
 NOMATCH=90
 PARAMS=2 # Function requires 2 arguments.
 BAD_PARAMS=91

 [$# −eq $PARAMS] || return $BAD_PARAMS

 case "$1" in
 "$2") return $MATCH;;
 *) return $NOMATCH;;
 esac

}

a=one
b=two
c=three
d=two

match_string $a # wrong number of parameters
echo $? # 91

match_string $a $b # no match
echo $? # 90

match_string $b $d # match
echo $? # 0

exit 0

Example 10−26. Checking for alphabetic input

#!/bin/bash
Using "case" structure to filter a string.

SUCCESS=0
FAILURE=−1

isalpha () # Tests whether *first character* of input string is alphabetic.
{
if [−z "$1"] # No argument passed?
then
 return $FAILURE
fi

case "$1" in
[a−zA−Z]*) return $SUCCESS;; # Begins with a letter?
*) return $FAILURE;;
esac
} # Compare this with "isalpha ()" function in C.

isalpha2 () # Tests whether *entire string* is alphabetic.
{
 [$# −eq 1] || return $FAILURE

 case $1 in
 [!a−zA−Z]|"") return $FAILURE;;

Advanced Bash−Scripting Guide

10.4. Testing and Branching 114

 *) return $SUCCESS;;
 esac
}

check_var () # Front−end to isalpha().
{
if isalpha "$@"
then
 echo "$* = alpha"
else
 echo "$* = non−alpha" # Also "non−alpha" if no argument passed.
fi
}

a=23skidoo
b=H3llo
c=−What?
d=`echo $b` # Command substitution.

check_var $a
check_var $b
check_var $c
check_var $d
check_var # No argument passed, so what happens?

Script improved by S.C.

exit 0

select

The select construct, adopted from the Korn Shell, is yet another tool for building menus.

select variable [in list]
do

command...
 break
done

This prompts the user to enter one of the choices presented in the variable list. Note that select uses
the PS3 prompt (#?) by default, but that this may be changed.

Example 10−27. Creating menus using select

#!/bin/bash

PS3='Choose your favorite vegetable: ' # Sets the prompt string.

echo

select vegetable in "beans" "carrots" "potatoes" "onions" "rutabagas"
do
 echo
 echo "Your favorite veggie is $vegetable."
 echo "Yuck!"

Advanced Bash−Scripting Guide

10.4. Testing and Branching 115

 echo
 break # if no 'break' here, keeps looping forever.
done

exit 0

If in list is omitted, then select uses the list of command line arguments ($@) passed to the script
or to the function in which the select construct is embedded.

Compare this to the behavior of a

for variable [in list]

construct with the in list omitted.

Example 10−28. Creating menus using select in a function

#!/bin/bash

PS3='Choose your favorite vegetable: '

echo

choice_of()
{
select vegetable
[in list] omitted, so 'select' uses arguments passed to function.
do
 echo
 echo "Your favorite veggie is $vegetable."
 echo "Yuck!"
 echo
 break
done
}

choice_of beans rice carrots radishes tomatoes spinach
$1 $2 $3 $4 $5 $6
passed to choice_of() function

exit 0

Advanced Bash−Scripting Guide

10.4. Testing and Branching 116

Chapter 11. Internal Commands and Builtins
A builtin is a command contained within the Bash tool set, literally built in. A builtin may be a synonym to a
system command of the same name, but Bash reimplements it internally. [23] For example, the Bash
echo command is not the same as /bin/echo, although their behavior is almost identical.

A keyword is a reserved word, token or operator. Keywords have a special meaning to the shell, and indeed
are the building blocks of the shell's syntax. As examples, "for", "while" and "!" are keywords. Similar to a
builtin, a keyword is hard−coded into Bash.

I/O

echo

prints (to stdout) an expression or variable (see Example 5−1).

echo Hello
echo $a

An echo requires the −e option to print escaped characters. See Example 6−2.

Normally, each echo command prints a terminal newline, but the −n option suppresses this.

An echo can be used to feed a sequence of commands down a pipe.

if echo "$VAR" | grep −q txt # if [[$VAR = *txt*]]
then
 echo "$VAR contains the substring sequence \"txt\""
fi

An echo, in combination with command
substitution can set a variable.

a=`echo "HELLO" | tr A−Z a−z`

See also Example 12−15, Example 12−2, Example
12−28, and Example 12−29.

Be aware that echo `command` deletes any linefeeds that the output
of command generates. Since $IFS normally contains \n as one of
its set of whitespace characters, Bash segments the output of
command at linefeeds into arguments to echo, which then emits
these arguments separated by spaces.

bash$ printf '\n\n1\n2\n3\n\n\n\n'

 1
 2

Chapter 11. Internal Commands and Builtins 117

 3

bash $

bash$ echo "`printf '\n\n1\n2\n3\n\n\n\n'`"

 1
 2
 3
bash $

This command is a shell builtin, and not the same as
/bin/echo, although its behavior is similar.

bash$ type −a echo
echo is a shell builtin
 echo is /bin/echo

printf

The printf, formatted print, command is an enhanced echo. It is a limited variant of the C language
printf, and the syntax is somewhat different.

printf format−string... parameter...

This is the Bash builtin version of the /bin/printf or /usr/bin/printf command. See the
printf manpage (of the system command) for in−depth coverage.

Older versions of Bash may not support printf.

Example 11−1. printf in action

#!/bin/bash
printf demo

PI=3.14159265358979
DecimalConstant=31373
Message1="Greetings,"
Message2="Earthling."

echo

printf "Pi to 2 decimal places = %1.2f" $PI
echo
printf "Pi to 9 decimal places = %1.9f" $PI # It even rounds off correctly.

printf "\n" # Prints a line feed,
 # equivalent to 'echo'.

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 118

printf "Constant = \t%d\n" $DecimalConstant # Inserts tab (\t)

printf "%s %s \n" $Message1 $Message2

echo

==#
Simulation of C function, 'sprintf'.
Loading a variable with a formatted string.

echo

Pi12=$(printf "%1.12f" $PI)
echo "Pi to 12 decimal places = $Pi12"

Msg=`printf "%s %s \n" $Message1 $Message2`
echo $Msg; echo $Msg

As it happens, the 'sprintf' function can now be accessed
as a loadable module to Bash, but this is not portable.

exit 0

Formatting error messages is a useful application of printf

E_BADDIR=65

var=nonexistent_directory

error()
{
 printf "$@" >&2
 # Formats positional params passed, and sents them to stderr.
 echo
 exit $E_BADDIR
}

cd $var || error $"Can't cd to %s." "$var"

Thanks, S.C.

read

"Reads" the value of a variable from stdin, that is, interactively fetches input from the keyboard.
The −a option lets read get array variables (see Example 26−2).

Example 11−2. Variable assignment, using read

#!/bin/bash

echo −n "Enter the value of variable 'var1': "
The −n option to echo suppresses newline.

read var1
Note no '$' in front of var1, since it is being set.

echo "var1 = $var1"

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 119

echo

A single 'read' statement can set multiple variables.
echo −n "Enter the values of variables 'var2' and 'var3' (separated by a space or tab): "
read var2 var3
echo "var2 = $var2 var3 = $var3"
If you input only one value, the other variable(s) will remain unset (null).

exit 0

Normally, inputting a \ suppresses a newline during input to a read. The −r option causes an
inputted \ to be interpreted literally.

Example 11−3. Multi−line input to read

#!/bin/bash

echo

echo "Enter a string terminated by a \\, then press <ENTER>."
echo "Then, enter a second string, and again press <ENTER>."
read var1 # The "\" suppresses the newline, when reading "var1".
 # first line \
 # second line

echo "var1 = $var1"
var1 = first line second line

For each line terminated by a "\",
you get a prompt on the next line to continue feeding characters into var1.

echo; echo

echo "Enter another string terminated by a \\ , then press <ENTER>."
read −r var2 # The −r option causes the "\" to be read literally.
 # first line \

echo "var2 = $var2"
var2 = first line \

Data entry terminates with the first <ENTER>.

echo

exit 0

The read command has some interesting options that permit echoing a prompt and even reading
keystrokes without hitting ENTER.

Read a keypress without hitting ENTER.

read −s −n1 −p "Hit a key " keypress
echo; echo "Keypress was "\"$keypress\""."

−s option means do not echo input.
−n N option means accept only N characters of input.
−p option means echo the following prompt before reading input.

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 120

Using these options is tricky, since they need to be in the correct order.

The read command may also "read" its variable value from a file redirected to stdin. If the file
contains more than one line, only the first line is assigned to the variable. If read has more than one
parameter, then each of these variables gets assigned a successive whitespace−delineated string.
Caution!

Example 11−4. Using read with file redirection

#!/bin/bash

read var1 <data−file
echo "var1 = $var1"
var1 set to the entire first line of the input file "data−file"

read var2 var3 <data−file
echo "var2 = $var2 var3 = $var3"
Note non−intuitive behavior of "read" here.
1) Rewinds back to the beginning of input file.
2) Each variable is now set to a corresponding string,
separated by whitespace, rather than to an entire line of text.
3) The final variable gets the remainder of the line.
4) If there are more variables to be set than whitespace−terminated strings
on the first line of the file, then the excess variables remain empty.

echo "−−"

How to resolve the above problem with a loop:
while read line
do
 echo "$line"
done <data−file
Thanks, Heiner Steven for pointing this out.

echo "−−"

Use $IFS (Internal File Separator variable) to split a line of input to
"read", if you do not want the default to be whitespace.

echo "List of all users:"
OIFS=$IFS; IFS=: # /etc/passwd uses ":" for field separator.
while read name passwd uid gid fullname ignore
do
 echo "$name ($fullname)"
done </etc/passwd # I/O redirection.
IFS=$OIFS # Restore originial $IFS.
This code snippet also by Heiner Steven.

exit 0

Filesystem

cd

The familiar cd change directory command finds use in scripts where execution of a command
requires being in a specified directory.

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 121

(cd /source/directory && tar cf − .) | (cd /dest/directory && tar xpvf −)

[from the previously cited example by Alan Cox]

The −P (physical) option to cd causes it to ignore symbolic links.

cd − changes to $OLDPWD, the previous working directory.

pwd

Print Working Directory. This gives the user's (or script's) current directory (see Example 11−5). The
effect is identical to reading the value of the builtin variable $PWD.

pushd, popd, dirs

This command set is a mechanism for bookmarking working directories, a means of moving back
and forth through directories in an orderly manner. A pushdown stack is used to keep track of
directory names. Options allow various manipulations of the directory stack.

pushd dir−name pushes the path dir−name onto the directory stack and simultaneously
changes the current working directory to dir−name

popd removes (pops) the top directory path name off the directory stack and simultaneously changes
the current working directory to that directory popped from the stack.

dirs lists the contents of the directory stack (counterpart to $DIRSTACK) A successful pushd or
popd will automatically invoke dirs.

Scripts that require various changes to the current working directory without hard−coding the
directory name changes can make good use of these commands. Note that the implicit
$DIRSTACK array variable, accessible from within a script, holds the contents of the directory stack.

Example 11−5. Changing the current working directory

#!/bin/bash

dir1=/usr/local
dir2=/var/spool

pushd $dir1
Will do an automatic 'dirs' (list directory stack to stdout).
echo "Now in directory `pwd`." # Uses back−quoted 'pwd'.

Now, do some stuff in directory 'dir1'.
pushd $dir2
echo "Now in directory `pwd`."

Now, do some stuff in directory 'dir2'.
echo "The top entry in the DIRSTACK array is $DIRSTACK."
popd
echo "Now back in directory `pwd`."

Now, do some more stuff in directory 'dir1'.
popd

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 122

echo "Now back in original working directory `pwd`."

exit 0

Variables

let

The let command carries out arithmetic operations on variables. In many cases, it functions as a less
complex version of expr.

Example 11−6. Letting let do some arithmetic.

#!/bin/bash

echo

let a=11 # Same as 'a=11'
let a=a+5 # Equivalent to let "a = a + 5"
 # (double quotes and spaces make it more readable)
echo "11 + 5 = $a"

let "a <<= 3" # Equivalent to let "a = a << 3"
echo "\"\$a\" (=16) left−shifted 3 places = $a"

let "a /= 4" # Equivalent to let "a = a / 4"
echo "128 / 4 = $a"

let "a −= 5" # Equivalent to let "a = a − 5"
echo "32 − 5 = $a"

let "a = a * 10" # Equivalent to let "a = a * 10"
echo "27 * 10 = $a"

let "a %= 8" # Equivalent to let "a = a % 8"
echo "270 modulo 8 = $a (270 / 8 = 33, remainder $a)"

echo

exit 0

eval

eval arg1 [arg2] ... [argN]

Translates into commands the arguments in a list (useful for code generation within a script).

Example 11−7. Showing the effect of eval

#!/bin/bash

y=`eval ls −l` # Similar to y=`ls −l`
echo $y # but linefeeds removed.

y=`eval df` # Similar to y=`df`
echo $y # but linefeeds removed.

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 123

Since LF's not preserved, it may make it easier to parse output.

exit 0

Example 11−8. Forcing a log−off

#!/bin/bash

y=`eval ps ax | sed −n '/ppp/p' | awk '{ print $1 }'`
Finding the process number of 'ppp'.

kill −9 $y # Killing it

Above lines may be replaced by
kill −9 `ps ax | awk '/ppp/ { print $1 }'

chmod 666 /dev/ttyS3
Doing a SIGKILL on ppp changes the permissions
on the serial port. Restore them to previous state.

rm /var/lock/LCK..ttyS3 # Remove the serial port lock file.

exit 0

Example 11−9. A version of "rot13"

#!/bin/bash
rot13.sh: Classic rot13 algorithm, encryption that might fool a 3−year old.

Usage: ./rot13.sh filename
or ./rot13.sh <filename
or ./rot13.sh and supply keyboard input (stdin)

cat "$@" | tr 'a−zA−Z' 'n−za−mN−ZA−M' # "a" goes to "n", "b" to "o", etc.
The 'cat "$@"' construction
permits getting input either from stdin or from files.

exit 0
_2;

The eval command can be risky, and normally
should be avoided when there exists a reasonable
alternative. An eval $COMMANDS executes the
contents of COMMANDS, which may contain such
unpleasant surprises as rm −rf *. Running an
eval on unfamiliar code written by persons
unknown is living dangerously.

set

The set command changes the value of internal script variables. One use for this is to toggle option
flags which help determine the behavior of the script. Another application for it is to reset the
positional parameters that a script sees as the result of a command (set `command`). The script
can then parse the fields of the command output.

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 124

Example 11−10. Using set with positional parameters

#!/bin/bash

script "set−test"

Invoke this script with three command line parameters,
for example, "./set−test one two three".

echo
echo "Positional parameters before set \`uname −a\` :"
echo "Command−line argument #1 = $1"
echo "Command−line argument #2 = $2"
echo "Command−line argument #3 = $3"

echo

set `uname −a` # Sets the positional parameters to the output
 # of the command `uname −a`

echo "Positional parameters after set \`uname −a\` :"
$1, $2, $3, etc. reinitialized to result of `uname −a`
echo "Field #1 of 'uname −a' = $1"
echo "Field #2 of 'uname −a' = $2"
echo "Field #3 of 'uname −a' = $3"
echo

exit 0

See also Example 10−2.

unset

The unset command deletes a shell variable, effectively setting it to null. Note that this command
does not affect positional parameters.

bash$ unset PATH

bash$ echo $PATH

bash$

Example 11−11. "unsetting" a variable

#!/bin/bash
unset.sh: Unsetting a variable.

variable=hello # Initialized.
echo "variable = $variable"

unset variable # Unset.
 # Same effect as variable=
echo "(unset) variable = $variable" # $variable is null.

exit 0

export

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 125

The export command makes available variables to all child processes of the running script or shell.
Unfortunately, there is no way to export variables back to the parent process, to the process that
called or invoked the script or shell. One important use of export command is in startup files, to
initialize and make accessible environmental variables to subsequent user processes.

Example 11−12. Using export to pass a variable to an embedded awk script

#!/bin/bash

Yet another version of the "column totaler" script (col−totaler.sh)
that adds up a specified column (of numbers) in the target file.
This uses the environment to pass a script variable to 'awk'.

ARGS=2
E_WRONGARGS=65

if [$# −ne "$ARGS"] # Check for proper no. of command line args.
then
 echo "Usage: `basename $0` filename column−number"
 exit $E_WRONGARGS
fi

filename=$1
column_number=$2

#===== Same as original script, up to this point =====#

export column_number
Export column number to environment, so it's available for retrieval.

Begin awk script.
−−
awk '{ total += $ENVIRON["column_number"]
}
END { print total }' $filename
−−
End awk script.

Thanks, Stephane Chazelas.

exit 0

It is possible to initialize and export variables in
the same operation, as in export var1=xxx.

declare, typeset

The declare and typeset commands specify and/or restrict properties of variables.

readonly

Same as declare −r, sets a variable as read−only, or, in effect, as a constant. Attempts to change the
variable fail with an error message. This is the shell analog of the C language const type qualifier.

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 126

#FILESREF

getopts

This powerful tool parses command line arguments passed to the script. This is the bash analog of the
getopt library function familiar to C programmers. It permits passing and concatenating multiple
options [24] and associated arguments to a script (for example scriptname −abc −e
/usr/local).

The getopts construct uses two implicit variables. $OPTIND is the argument pointer (OPTion
INDex) and $OPTARG (OPTion ARGument) the (optional) argument attached to an option. A colon
following the option name in the declaration tags that option as having an associated argument.

A getopts construct usually comes packaged in a while loop, which processes the options and
arguments one at a time, then decrements the implicit $OPTIND variable to step to the next.

The arguments must be passed from the
command line to the script preceded by a
minus (−) or a plus (+). It is the prefixed
− or + that lets getopts recognize
command−line arguments as options. In
fact, getopts will not process arguments
without the prefixed − or +, and will
terminate option processing at the first
argument encountered lacking them.

1.

The getopts template differs slightly from
the standard while loop, in that it lacks
condition brackets.

2.

The getopts construct replaces the obsolete
getopt command.

3.

while getopts ":abcde:fg" Option
Initial declaration.
a, b, c, d, e, f, and g are the options (flags) expected.
The : after option 'e' shows it will have an argument passed with it.
do
 case $Option in
 a) # Do something with variable 'a'.
 b) # Do something with variable 'b'.
 ...
 e) # Do something with 'e', and also with $OPTARG,
 # which is the associated argument passed with option 'e'.
 ...
 g) # Do something with variable 'g'.
 esac
done
shift $(($OPTIND − 1))
Move argument pointer to next.

All this is not nearly as complicated as it looks <grin>.

Example 11−13. Using getopts to read the options/arguments passed to a script

#!/bin/bash

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 127

'getopts' processes command line arguments to script.
The arguments are parsed as "options" (flags) and associated arguments.

Try invoking this script with
'scriptname −mn'
'scriptname −oq qOption' (qOption can be some arbitrary string.)
'scriptname −qXXX −r'
#
'scriptname −qr' − Unexpected result, takes "r" as the argument to option "q"
'scriptname −q −r' − Unexpected result, same as above
If an option expects an argument ("flag:"), then it will grab
whatever is next on the command line.

NO_ARGS=0
OPTERROR=65

if [$# −eq "$NO_ARGS"] # Script invoked with no command−line args?
then
 echo "Usage: `basename $0` options (−mnopqrs)"
 exit $OPTERROR # Exit and explain usage, if no argument(s) given.
fi
Usage: scriptname −options
Note: dash (−) necessary

while getopts ":mnopq:rs" Option
do
 case $Option in
 m) echo "Scenario #1: option −m−";;
 n | o) echo "Scenario #2: option −$Option−";;
 p) echo "Scenario #3: option −p−";;
 q) echo "Scenario #4: option −q−, with argument \"$OPTARG\"";;
 # Note that option 'q' must have an associated argument,
 # otherwise it falls through to the default.
 r | s) echo "Scenario #5: option −$Option−"'';;
 *) echo "Unimplemented option chosen.";; # DEFAULT
 esac
done

shift $(($OPTIND − 1))
Decrements the argument pointer so it points to next argument.

exit 0

Script Behavior

source, . (dot command)

This command, when invoked from the command line, executes a script. Within a script, a source
file−name loads the file file−name. This is the shell scripting equivalent of a C/C++
#include directive. It is useful in situations when multiple scripts use a common data file or
function library.

Example 11−14. "Including" a data file

#!/bin/bash

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 128

. data−file # Load a data file.
Same effect as "source data−file", but more portable.

The file "data−file" must be present in current working directory,
since it is referred to by its 'basename'.

Now, reference some data from that file.

echo "variable1 (from data−file) = $variable1"
echo "variable3 (from data−file) = $variable3"

let "sum = $variable2 + $variable4"
echo "Sum of variable2 + variable4 (from data−file) = $sum"
echo "message1 (from data−file) is \"$message1\""
Note: escaped quotes

print_message This is the message−print function in the data−file.

exit 0

File data−file for Example 11−14, above. Must be present in same directory.

This is a data file loaded by a script.
Files of this type may contain variables, functions, etc.
It may be loaded with a 'source' or '.' command by a shell script.

Let's initialize some variables.

variable1=22
variable2=474
variable3=5
variable4=97

message1="Hello, how are you?"
message2="Enough for now. Goodbye."

print_message ()
{
Echoes any message passed to it.

 if [−z "$1"]
 then
 return 1
 # Error, if argument missing.
 fi

 echo

 until [−z "$1"]
 do
 # Step through arguments passed to function.
 echo −n "$1"
 # Echo args one at a time, suppressing line feeds.
 echo −n " "
 # Insert spaces between words.
 shift
 # Next one.
 done

 echo

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 129

 return 0
}

exit

Unconditionally terminates a script. The exit command may optionally take an integer argument,
which is returned to the shell as the exit status of the script. It is a good practice to end all but the
simplest scripts with an exit 0, indicating a successful run.

If a script terminates with an exit lacking an
argument, the exit status of the script is the exit
status of the last command executed in the script,
not counting the exit.

exec

This shell builtin replaces the current process with a specified command. Normally, when the shell
encounters a command, it forks off [25] a child process to actually execute the command. Using the
exec builtin, the shell does not fork, and the command exec'ed replaces the shell. When used in a
script, therefore, it forces an exit from the script when the exec'ed command terminates. For this
reason, if an exec appears in a script, it would probably be the final command.

An exec also serves to reassign file descriptors. exec <zzz−file replaces stdin with the file
zzz−file (see Example 16−1).

Example 11−15. Effects of exec

#!/bin/bash

exec echo "Exiting \"$0\"." # Exit from script.

The following lines never execute.

echo "This will never echo."

exit 0 # Will not exit here.

The −exec option to find is not the same as the
exec shell builtin.

shopt

This command permits changing shell options on the fly (see Example 24−1 and Example 24−2). It
often appears in the Bash startup files, but also has its uses in scripts. Needs version 2 or later of
Bash.

shopt −s cdspell
Allows minor misspelling directory names with 'cd'
command.

Commands

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 130

#FILESREF

true

A command that returns a successful (zero) exit status, but does nothing else.

Endless loop
while true # alias for ":"
do
 operation−1
 operation−2
 ...
 operation−n
 # Need a way to break out of loop.
done

false

A command that returns an unsuccessful exit status, but does nothing else.

Null loop
while false
do
 # The following code will not execute.
 operation−1
 operation−2
 ...
 operation−n
 # Nothing happens!
done

type [cmd]

Similar to the which external command, type cmd gives the full pathname to "cmd". Unlike which,
type is a Bash builtin. The useful −a option to type accesses identifies keywords and builtins,
and also locates system commands with identical names.

bash$ type '['
[is a shell builtin
bash$ type −a '['
[is a shell builtin
 [is /usr/bin/[

hash [cmds]

Record the path name of specified commands (in the shell hash table), so the shell or script will not
need to search the $PATH on subsequent calls to those commands. When hash is called with no
arguments, it simply lists the commands that have been hashed. The −r option resets the hash table.

help

help COMMAND looks up a short usage summary of the shell builtin COMMAND. This is the
counterpart to whatis, but for builtins.

bash$ help exit
exit: exit [n]
 Exit the shell with a status of N. If N is omitted, the exit status
 is that of the last command executed.

Advanced Bash−Scripting Guide

Chapter 11. Internal Commands and Builtins 131

11.1. Job Control Commands

Certain of the following job control commands take a "job identifier" as an argument. See the table at end of
the chapter.

jobs

Lists the jobs running in the background, giving the job number. Not as useful as ps.

It is all too easy to confuse jobs and processes. Certain builtins,
such as kill, disown, and wait accept either a job number or a
process number as an argument. The fg, bg and jobs commands
accept only a job number.

bash$ sleep 100 &
[1] 1384

bash $ jobs
[1]+ Running sleep 100 &

"1" is the job number (jobs are maintained by the current shell), and
"1384" is the process number (processes are maintained by the
system). To kill this job/process, either a kill %1 or a kill
1384 works.

Thanks, S.C.

disown

Remove job(s) from the shell's table of active jobs.

fg, bg

The fg command switches a job running in the background into the foreground. The bg command
restarts a suspended job, and runs it in the background. If no job number is specified, then the fg or
bg command acts upon the currently running job.

wait

Stop script execution until all jobs running in background have terminated, or until the job number or
process id specified as an option terminates. Returns the exit status of waited−for command.

You may use the wait command to prevent a script from exiting before a background job finishes
executing (this would create a dreaded orphan process).

Example 11−16. Waiting for a process to finish before proceeding

Advanced Bash−Scripting Guide

11.1. Job Control Commands 132

#!/bin/bash

ROOT_UID=0 # Only users with $UID 0 have root privileges.
E_NOTROOT=65
E_NOPARAMS=66

if ["$UID" −ne "$ROOT_UID"]
then
 echo "Must be root to run this script."
 # "Run along kid, it's past your bedtime."
 exit $E_NOTROOT
fi

if [−z "$1"]
then
 echo "Usage: `basename $0` find−string"
 exit $E_NOPARAMS
fi

echo "Updating 'locate' database..."
echo "This may take a while."
updatedb /usr & # Must be run as root.

wait
Don't run the rest of the script until 'updatedb' finished.
You want the the database updated before looking up the file name.

locate $1

Without the wait command, in the worse case scenario,
the script would exit while 'updatedb' was still running,
leaving it as an orphan process.

exit 0

Optionally, wait can take a job identifier as an argument, for example, wait%1 or wait $PPID. See
the job id table.

Within a script, running a command in the background with an ampersand (&)
may cause the script to hang until ENTER is hit. This seems to occur with
commands that write to stdout. It can be a major annoyance.

#!/bin/bash
test.sh

ls −l &
echo "Done."

bash$./test.sh
Done.
 [bozo@localhost test−scripts]$ total 1
 −rwxr−xr−x 1 bozo bozo 34 Oct 11 15:09 test.sh
 _

Placing a wait after the background command seems to remedy this.

Advanced Bash−Scripting Guide

11.1. Job Control Commands 133

#!/bin/bash
test.sh

ls −l &
echo "Done."
wait

bash$./test.sh
Done.
 [bozo@localhost test−scripts]$ total 1
 −rwxr−xr−x 1 bozo bozo 34 Oct 11 15:09 test.sh

Redirecting the output of the command to a file or even to /dev/null also takes
care of this problem.

suspend

This has a similar effect to Control−Z, but it suspends the shell (the shell's parent process should
resume it at an appropriate time).

logout

Exit a login shell, optionally specifying an exit status.

times

Gives statistics on the system time used in executing commands, in the following form:

0m0.020s 0m0.020s

This capability is of very limited value, since it is uncommon to profile and benchmark shell scripts.
kill

Forcibly terminate a process by sending it an appropriate terminate signal (see Example 13−4).

kill −l lists all the signals. A kill −9 is a
"sure kill", which will usually terminate a
process that stubbornly refuses to die with a
plain kill. Sometimes, a kill −15 works. A
"zombie process", that is, a process whose
parent has terminated, cannot be killed (you can't
kill something that is already dead), but init will
usually clean it up sooner or later.

command

The command COMMAND directive disables aliases and functions for the command
"COMMAND".

This is one of three shell directives that effect
script command processing. The others are
builtin and enable.

builtin

Advanced Bash−Scripting Guide

11.1. Job Control Commands 134

Invoking builtin BUILTIN_COMMAND runs the command "BUILTIN_COMMAND" as a shell
builtin, temporarily disabling both functions and external system commands with the same name.

enable

This either enables or disables a shell builtin command. As an example, enable −n kill disables the
shell builtin kill, so that when Bash subsequently encounters kill, it invokes /bin/kill.

The −a option to enable lists all the shell builtins, indicating whether or not they are enabled. The
−f filename option lets enable load a builtin as a shared library (DLL) module from a properly
compiled object file. [26].

autoload

This is a port to Bash of the ksh autoloader. With autoload in place, a function with an
"autoload" declaration will load from an external file at its first invocation. [27] This saves system
resources.

Note that autoload is not a part of the core Bash installation. It needs to be loaded in with enable
−f (see above).

Table 11−1. Job Identifiers

Notation Meaning

%N Job number [N]

%S Invocation (command line) of job begins
with string S

%?S Invocation (command line) of job contains
within it string S

%% "current" job (last job stopped in
foreground or started in background)

%+ "current" job (last job stopped in
foreground or started in background)

%− Last job

$! Last background process

Advanced Bash−Scripting Guide

11.1. Job Control Commands 135

Chapter 12. External Filters, Programs and
Commands
Standard UNIX commands make shell scripts more versatile. The power of scripts comes from coupling
system commands and shell directives with simple programming constructs.

12.1. Basic Commands

Command Listing

ls

The basic file "list" command. It is all too easy to underestimate the power of this humble command.
For example, using the −R, recursive option, ls provides a tree−like listing of a directory structure.
Other interesting options are −S, sort listing by file size, −t, sort by file modification time, and −i,
show file inodes (see Example 12−3).

Example 12−1. Using ls to create a table of contents for burning a CDR disk

#!/bin/bash

SPEED=2 # May use higher speed if supported.
IMAGEFILE=cdimage.iso
CONTENTSFILE=contents
DEFAULTDIR=/opt

Script to automate burning a CDR.

Uses Joerg Schilling's "cdrecord" package.
(http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html)

If this script invoked as an ordinary user, need to suid cdrecord
(chmod u+s /usr/bin/cdrecord, as root).

if [−z "$1"]
then
 IMAGE_DIRECTORY=$DEFAULTDIR
 # Default directory, if not specified on command line.
else
 IMAGE_DIRECTORY=$1
fi

ls −lRF $IMAGE_DIRECTORY > $IMAGE_DIRECTORY/$CONTENTSFILE
The "l" option gives a "long" file listing.
The "R" option makes the listing recursive.
The "F" option marks the file types (directories get a trailing /).
echo "Creating table of contents."

mkisofs −r −o $IMAGFILE $IMAGE_DIRECTORY
echo "Creating ISO9660 file system image ($IMAGEFILE)."

cdrecord −v −isosize speed=$SPEED dev=0,0 $IMAGEFILE

Chapter 12. External Filters, Programs and Commands 136

echo "Burning the disk."
echo "Please be patient, this will take a while."

exit 0

cat, tac

cat, an acronym for concatenate, lists a file to stdout. When combined with redirection (> or >>),
it is commonly used to concatenate files.

cat filename cat file.1 file.2 file.3 > file.123

The −n option to cat inserts consecutive numbers before all lines of the target file(s). The −b option
numbers only the non−blank lines. The −v option echoes nonprintable characters, using ^ notation.

See also Example 12−21 and Example 12−17.

tac, is the inverse of cat, listing a file backwards from its end.

rev

reverses each line of a file, and outputs to stdout. This is not the same effect as tac, as it preserves
the order of the lines, but flips each one around.

bash$ cat file1.txt
This is line 1.
 This is line 2.

bash$ tac file1.txt
This is line 2.
 This is line 1.

bash$ rev file1.txt
.1 enil si sihT
 .2 enil si sihT

cp

This is the file copy command. cp file1 file2 copies file1 to file2, overwriting file2 if
it already exists (see Example 12−5).

Particularly useful are the −a archive flag (for
copying an entire directory tree) and the −r and
−R recursive flags.

mv

This is the file move command. It is equivalent to a combination of cp and rm. It may be used to
move multiple files to a directory, or even to rename a directory. For some examples of using mv in a
script, see Example 9−14 and Example A−3.

rm

Advanced Bash−Scripting Guide

Chapter 12. External Filters, Programs and Commands 137

Delete (remove) a file or files. The −f forces removal of even readonly files.

When used with the recursive flag −r, this
command removes files all the way down the
directory tree.

rmdir

Remove directory. The directory must be empty of all files, including invisible "dotfiles", [28] for
this command to succeed.

mkdir

Make directory, creates a new directory. mkdir −p project/programs/December creates
the named directory. The −p option automatically creates any necessary parent directories.

chmod

Changes the attributes of an existing file (see Example 11−8).

chmod +x filename
Makes "filename" executable for all users.

chmod u+s filename
Sets "suid" bit on "filename" permissions.
An ordinary user may execute "filename" with same privileges as the file's owner.
(This does not apply to shell scripts.)

chmod 644 filename
Makes "filename" readable/writable to owner, readable to
others
(octal mode).

chmod 1777 directory−name
Gives everyone read, write, and execute permission in directory,
however also sets the "sticky bit".
This means that only the owner of the directory,
owner of the file, and, of course, root
can delete any particular file in that directory.

chattr

Change file attributes. This has the same effect as chmod above, but with a different invocation
syntax, and it works only on an ext2 filesystem.

ln

Creates links to pre−existings files. Most often used with the −s, symbolic or "soft" link flag. This
permits referencing the linked file by more than one name and is a superior alternative to aliasing
(see Example 5−6).

ln −s oldfile newfile links the previously existing oldfile to the newly created link,
newfile.

Advanced Bash−Scripting Guide

Chapter 12. External Filters, Programs and Commands 138

12.2. Complex Commands

Command Listing

find

−exec COMMAND \;

Carries out COMMAND on each file that find scores a hit on. COMMAND terminates with \; (the ; is
escaped to make certain the shell passes it to find literally, which concludes the command sequence).
If COMMAND contains {}, then find substitutes the full path name of the selected file.

bash$ find ~/ −name '*.txt'
/home/bozo/.kde/share/apps/karm/karmdata.txt
 /home/bozo/misc/irmeyc.txt
 /home/bozo/test−scripts/1.txt

find /home/bozo/projects −mtime 1
Lists all files in /home/bozo/projects directory tree
that were modified within the last day.

find /etc −exec grep '[0−9][0−9]*[.][0−9][0−9]*[.][0−9][0−9]*[.][0−9][0−9]*' {} \;

Finds all IP addresses (xxx.xxx.xxx.xxx) in /etc directory files.
There a few extraneous hits − how can they be filtered out?

Perhaps by:

find /etc −type f −exec cat '{}' \; | tr −c '.[:digit:]' '\n' \
 | grep '^[^.][^.]*\.[^.][^.]*\.[^.][^.]*\.[^.][^.]*$'
[:digit:] is one of the character classes
introduced with the POSIX 1003.2 standard.

Thanks, S.C.

The −exec option to find should not be confused
with the exec shell builtin.

Example 12−2. Badname, eliminate file names in current directory containing bad characters
and whitespace.

#!/bin/bash

Delete filenames in current directory containing bad characters.

for filename in *
do
badname=`echo "$filename" | sed −n /[\+\{\;\"\\\=\?~\(\)\<\>\&*\|\$]/p`
Files containing those nasties: + { ; " \ = ? ~ () < > & * | $
rm $badname 2>/dev/null # So error messages deep−sixed.
done

Now, take care of files containing all manner of whitespace.

Advanced Bash−Scripting Guide

12.2. Complex Commands 139

find . −name "* *" −exec rm −f {} \;
The path name of the file that "find" finds replaces the "{}".
The '\' ensures that the ';' is interpreted literally, as end of command.

exit 0

#−−−
Commands below this line will not execute because of "exit" command.

An alternative to the above script:
find . −name '*[+{;"\\=?~()<>&*|$]*' −exec rm −f '{}' \;
exit 0
(Thanks, S.C.)

Example 12−3. Deleting a file by its inode number

#!/bin/bash
idelete.sh: Deleting a file by its inode number.

This is useful when a filename starts with an illegal character,
#+ such as ? or −.

ARGCOUNT=1 # Filename arg must be passed to script.
E_WRONGARGS=70
E_FILE_NOT_EXIST=71
E_CHANGED_MIND=72

if [$# −ne "$ARGCOUNT"]
then
 echo "Usage: `basename $0` filename"
 exit $E_WRONGARGS
fi

if [! −e "$1"]
then
 echo "File \""$1"\" does not exist."
 exit $E_FILE_NOT_EXIST
fi

inum=`ls −i | grep "$1" | awk '{print $1}'`
inum = inode (index node) number of file
Every file has an inode, a record that hold its physical address info.

echo; echo −n "Are you absolutely sure you want to delete \"$1\" (y/n)? "
read answer
case "$answer" in
[nN]) echo "Changed your mind, huh?"
 exit $E_CHANGED_MIND
 ;;
*) echo "Deleting file \"$1\".";;
esac

find . −inum $inum −exec rm {} \;
echo "File "\"$1"\" deleted!"

exit 0

See Example 12−22, Example 4−3, and Example 10−8 for scripts using find. Its manpage provides
more detail on this complex and powerful command.

Advanced Bash−Scripting Guide

12.2. Complex Commands 140

xargs

A filter for feeding arguments to a command, and also a tool for assembling the commands
themselves. It breaks a data stream into small enough chunks for filters and commands to process.
Consider it as a powerful replacement for backquotes. In situations where backquotes fail with a too
many arguments error, substituting xargs often works. Normally, xargs reads from stdin or from a
pipe, but it can also be given the output of a file.

The default command for xargs is echo.

ls | xargs −p −l gzip gzips every file in current directory, one at a time, prompting before
each operation.

An interesting xargs option is −n NN, which
limits to NN the number of arguments passed.

ls | xargs −n 8 echo lists the files in the
current directory in 8 columns.

Another useful option is −0, in combination with
find −print0 or grep −lZ. This allows handling
arguments containing whitespace or quotes.

find / −type f −print0 | xargs
−0 grep −liwZ GUI | xargs −0 rm
−f

grep −rliwZ GUI / | xargs −0 rm
−f

Either of the above will remove any file
containing "GUI". (Thanks, S.C.)

Example 12−4. Logfile using xargs to monitor system log

#!/bin/bash

Generates a log file in current directory
from the tail end of /var/log/messages.

Note: /var/log/messages must be world readable
if this script invoked by an ordinary user.
#root chmod 644 /var/log/messages

LINES=5

(date; uname −a) >>logfile
Time and machine name
echo −−− >>logfile
tail −$LINES /var/log/messages | xargs | fmt −s >>logfile
echo >>logfile

Advanced Bash−Scripting Guide

12.2. Complex Commands 141

echo >>logfile

exit 0

Example 12−5. copydir, copying files in current directory to another, using xargs

#!/bin/bash

Copy (verbose) all files in current directory
to directory specified on command line.

if [−z "$1"] # Exit if no argument given.
then
 echo "Usage: `basename $0` directory−to−copy−to"
 exit 65
fi

ls . | xargs −i −t cp ./{} $1
This is the exact equivalent of
cp * $1
unless any of the filenames has "whitespace" characters.

exit 0

expr

All−purpose expression evaluator: Concatenates and evaluates the arguments according to the
operation given (arguments must be separated by spaces). Operations may be arithmetic, comparison,
string, or logical.

expr 3 + 5

returns 8

expr 5 % 3

returns 2

y=`expr $y + 1`

Increment a variable, with the same effect as let y=y+1 and y=$(($y+1)) This is an
example of arithmetic expansion.

z=`expr substr $string $position $length`

Extract substring of $length characters, starting at $position.

Example 12−6. Using expr

#!/bin/bash

Demonstrating some of the uses of 'expr'
=======================================

echo

Advanced Bash−Scripting Guide

12.2. Complex Commands 142

Arithmetic Operators
−−−−−−−−−− −−−−−−−−−

echo "Arithmetic Operators"
echo
a=`expr 5 + 3`
echo "5 + 3 = $a"

a=`expr $a + 1`
echo
echo "a + 1 = $a"
echo "(incrementing a variable)"

a=`expr 5 % 3`
modulo
echo
echo "5 mod 3 = $a"

echo
echo

Logical Operators
−−−−−−− −−−−−−−−−

Returns 1 if true, 0 if false,
#+ opposite of normal Bash convention.

echo "Logical Operators"
echo

x=24
y=25
b=`expr $x = $y` # Test equality.
echo "b = $b" # 0 ($x −ne $y)
echo

a=3
b=`expr $a \> 10`
echo 'b=`expr $a \> 10`, therefore...'
echo "If a > 10, b = 0 (false)"
echo "b = $b" # 0 (3 ! −gt 10)
echo

b=`expr $a \< 10`
echo "If a < 10, b = 1 (true)"
echo "b = $b" # 1 (3 −lt 10)
echo
Note escaping of operators.

b=`expr $a \<= 3`
echo "If a <= 3, b = 1 (true)"
echo "b = $b" # 1 (3 −le 3)
There is also a "\>=" operator (greater than or equal to).

echo
echo

Comparison Operators
−−−−−−−−−− −−−−−−−−−

Advanced Bash−Scripting Guide

12.2. Complex Commands 143

echo "Comparison Operators"
echo
a=zipper
echo "a is $a"
if [`expr $a = snap`]
Force re−evaluation of variable 'a'
then
 echo "a is not zipper"
fi

echo
echo

String Operators
−−−−−− −−−−−−−−−

echo "String Operators"
echo

a=1234zipper43231
echo "The string being operated upon is \"$a\"."

length: length of string
b=`expr length $a`
echo "Length of \"$a\" is $b."

index: position of first character in substring
that matches a character in string
b=`expr index $a 23`
echo "Numerical position of first \"2\" in \"$a\" is \"$b\"."

substr: extract substring, starting position & length specified
b=`expr substr $a 2 6`
echo "Substring of \"$a\", starting at position 2, and 6 chars long is \"$b\"."

'match' operations similarly to 'grep'
uses Regular Expressions
b=`expr match "$a" '[0−9]*'`
echo Number of digits at the beginning of \"$a\" is $b.
b=`expr match "$a" '\([0−9]*\)'` # Note escaped parentheses.
echo "The digits at the beginning of \"$a\" are \"$b\"."

echo

exit 0

The : operator can substitute for match. For example, b=`expr $a : [0−9]*` is
the exact equivalent of b=`expr match $a [0−9]*` in the above listing.

#!/bin/bash

echo
echo "String operations using \"expr $string :\" construct"
echo "−−−"
echo

a=1234zipper43231

Advanced Bash−Scripting Guide

12.2. Complex Commands 144

echo "The string being operated upon is \"`expr "$a" : '\(.*\)'`\"."
Escaped parentheses.
Regular expression parsing.

echo "Length of \"$a\" is `expr "$a" : '.*'`." # Length of string

echo "Number of digits at the beginning of \"$a\" is `expr "$a" : '[0−9]*'`."

echo "The digits at the beginning of \"$a\" are `expr "$a" : '\([0−9]*\)'`."

echo

exit 0

Perl and sed have far superior string parsing facilities. A short Perl or sed "subroutine" within a script (see
Section 34.2) is an attractive alternative to using expr.

See Section 9.2 for more on string operations.

12.3. Time / Date Commands

Command Listing

date

Simply invoked, date prints the date and time to stdout. Where this command gets interesting is in
its formatting and parsing options.

Example 12−7. Using date

#!/bin/bash
Exercising the 'date' command

echo "The number of days since the year's beginning is `date +%j`."
Needs a leading '+' to invoke formatting.
%j gives day of year.

echo "The number of seconds elapsed since 01/01/1970 is `date +%s`."
%s yields number of seconds since "UNIX epoch" began,
#+ but how is this useful?

prefix=temp
suffix=`eval date +%s` # The "+%s" option to 'date' is GNU−specific.
filename=$prefix.$suffix
echo $filename
It's great for creating "unique" temp filenames,
#+ even better than using $$.

Read the 'date' man page for more formatting options.

exit 0

zdump

Echoes the time in a specified time zone.

Advanced Bash−Scripting Guide

12.3. Time / Date Commands 145

bash$ zdump EST
EST Tue Sep 18 22:09:22 2001 EST

time

Outputs very verbose timing statistics for executing a command.

time ls −l / gives something like this:

0.00user 0.01system 0:00.05elapsed 16%CPU (0avgtext+0avgdata 0maxresident)k
 0inputs+0outputs (149major+27minor)pagefaults 0swaps

See also the very similar times command in the previous section.

As of version 2.0 of Bash, time became a shell
reserved word, with slightly altered behavior in a
pipeline.

touch

Utility for updating access/modification times of a file to current system time or other specified time,
but also useful for creating a new file. The command touch zzz will create a new file of zero
length, named zzz, assuming that zzz did not previously exist. Time−stamping empty files in this
way is useful for storing date information, for example in keeping track of modification times on a
project.

The touch command is equivalent to : >> newfile (for ordinary files).

at

The at job control command executes a given set of commands at a specified time. Superficially, it
resembles crond, however, at is chiefly useful for one−time execution of a command set.

at 2pm January 15 prompts for a set of commands to execute at that time. These commands
should be shell−script compatible, since, for all practical purposes, the user is typing in an executable
shell script a line at a time. Input terminates with a Ctl−D.

Using either the −f option or input redirection (<), at reads a command list from a file. This file is an
executable shell script, though it should, of course, be noninteractive. Particularly clever is including
the run−parts command in the file to execute a different set of scripts.

bash$ at 2:30 am Friday < at−jobs.list
job 2 at 2000−10−27 02:30

batch

The batch job control command is similar to at, but it runs a command list when the system load
drops below .8. Like at, it can read commands from a file with the −f option.

cal

Advanced Bash−Scripting Guide

12.3. Time / Date Commands 146

Prints a neatly formatted monthly calendar to stdout. Will do current year or a large range of past
and future years.

sleep

This is the shell equivalent of a wait loop. It pauses for a specified number of seconds, doing nothing.
This can be useful for timing or in processes running in the background, checking for a specific event
every so often (see Example 30−5).

sleep 3
Pauses 3 seconds.

The sleep command defaults to seconds, but minute,
hours, or days may also be specified.

sleep 3 h
Pauses 3 hours!

usleep

Microsleep (the "u" may be read as the Greek "mu", or micro prefix). This is the same as sleep,
above, but "sleeps" in microsecond intervals. This can be used for fine−grain timing, or for polling an
ongoing process at very frequent intervals.

usleep 30
Pauses 30 microseconds.

The usleep command does not provide particularly
accurate timing, and is therefore unsuitable for
critical timing loops.

hwclock, clock

The hwclock command accesses or adjusts the machine's hardware clock. Some options require root
privileges. The /etc/rc.d/rc.sysinit startup file uses hwclock to set the system time from
the hardware clock at bootup.

The clock command is a synonym for hwclock.

12.4. Text Processing Commands

Command Listing

sort

File sorter, often used as a filter in a pipe. This command sorts a text stream or file forwards or
backwards, or according to various keys or character positions. Using the −m option, it merges
presorted input files. The info page lists its many capabilities and options. See Example 10−8 and
Example 10−9.

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 147

tsort

Topological sort, reading in pairs of whitespace−separated strings and sorting according to input
patterns.

diff, patch

diff: flexible file comparison utility. It compares the target files line−by−line sequentially. In some
applications, such as comparing word dictionaries, it may be helpful to filter the files through
sort and uniq before piping them to diff. diff file−1 file−2 outputs the lines in the files that
differ, with carets showing which file each particular line belongs to.

The −−side−by−side option to diff outputs each compared file, line by line, in separate columns,
with non−matching lines marked.

There are available various fancy frontends for diff, such as spiff, wdiff, xdiff, and mgdiff.

The diff command returns an exit status of 0 if the
compared files are identical, and 1 if they differ.
This permits use of diff in a test construct within a
shell script (see below).

A common use for diff is generating difference files to be used with patch The −e option outputs
files suitable for ed or ex scripts.

patch: flexible versioning utility. Given a difference file generated by diff, patch can upgrade a
previous version of a package to a newer version. It is much more convenient to distribute a
relatively small "diff" file than the entire body of a newly revised package. Kernel "patches" have
become the preferred method of distributing the frequent releases of the Linux kernel.

patch −p1 <patch−file
Takes all the changes listed in 'patch−file'
and applies them to the files referenced therein.
This upgrades to a newer version of the package.

Patching the kernel:

cd /usr/src
gzip −cd patchXX.gz | patch −p0
Upgrading kernel source using 'patch'.
From the Linux kernel docs "README",
by anonymous author (Alan Cox?).

The diff command can also recursively compare directories (for
the filenames present).

bash$ diff −r ~/notes1 ~/notes2
Only in /home/bozo/notes1: file02
 Only in /home/bozo/notes1: file03
 Only in /home/bozo/notes2: file04

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 148

Use zdiff to compare gzipped files.
diff3

An extended version of diff that compares three files at a time. This command returns an exit value
of 0 upon successful execution, but unfortunately this gives no information about the results of the
comparison.

bash$ diff3 file−1 file−2 file−3
====
 1:1c
 This is line 1 of "file−1".
 2:1c
 This is line 1 of "file−2".
 3:1c
 This is line 1 of "file−3"

sdiff

Compare and/or edit two files in order to merge them into an output file. Because of its interactive
nature, this command would find little use in a script.

cmp

The cmp command is a simpler version of diff, above. Whereas diff reports the differences between
two files, cmp merely shows at what point they differ.

Like diff, cmp returns an exit status of 0 if the
compared files are identical, and 1 if they differ.
This permits use in a test construct within a shell
script.

Example 12−8. Using cmp to compare two files within a script.

#!/bin/bash

ARGS=2 # Two args to script expected.
E_BADARGS=65

if [$# −ne "$ARGS"]
then
 echo "Usage: `basename $0` file1 file2"
 exit $E_BADARGS
fi

cmp $1 $2 > /dev/null # /dev/null buries the output of the "cmp" command.
Also works with 'diff', i.e., diff $1 $2 > /dev/null

if [$? −eq 0] # Test exit status of "cmp" command.
then

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 149

 echo "File \"$1\" is identical to file \"$2\"."
else
 echo "File \"$1\" differs from file \"$2\"."
fi

exit 0

Use zcmp on gzipped files.
comm

Versatile file comparison utility. The files must be sorted for this to be useful.

comm −options first−file second−file

comm file−1 file−2 outputs three columns:

column 1 = lines unique to file−1♦
column 2 = lines unique to file−2♦
column 3 = lines common to both. ♦

The options allow suppressing output of one or more columns.

−1 suppresses column 1♦
−2 suppresses column 2♦
−3 suppresses column 3♦
−12 suppresses both columns 1 and 2, etc. ♦

uniq

This filter removes duplicate lines from a sorted file. It is often seen in a pipe coupled with sort.

cat list−1 list−2 list−3 | sort | uniq > final.list
Concatenates the list files,
sorts them,
removes duplicate lines,
and finally writes the result to an output file.

The useful −c option prefixes each line of the input file with its number of occurrences.

bash$ cat testfile
This line occurs only once.
 This line occurs twice.
 This line occurs twice.
 This line occurs three times.
 This line occurs three times.
 This line occurs three times.

bash$ uniq −c testfile
 1 This line occurs only once.
 2 This line occurs twice.
 3 This line occurs three times.

bash$ sort testfile | uniq −c | sort −nr

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 150

 3 This line occurs three times.
 2 This line occurs twice.
 1 This line occurs only once.

The sort INPUTFILE | uniq −c | sort −nr command string produces a frequency of
occurrence listing on the INPUTFILE file (the −nr options to sort cause a reverse numerical sort).
This template finds use in analysis of log files and dictionary lists, and wherever the lexical structure
of a document needs to be examined.

Example 12−9. Word Frequency Analysis

#!/bin/bash
wf.sh: Crude word frequency analysis on a text file.

Check for input file on command line.
ARGS=1
E_BADARGS=65
E_NOFILE=66

if [$# −ne $ARGS] # Correct number of arguments passed to script?
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

if [−f "$1"] # Check if file exists.
then
 file_name=$1
else
 echo "File \"$1\" does not exist."
 exit $E_NOFILE
fi

##
main
sed −e 's/\.//g' −e 's/ /\
/g' "$1" | tr 'A−Z' 'a−z' | sort | uniq −c | sort −nr
=========================
Frequency of occurrence

Filter out periods and
#+ change space between words to linefeed,
#+ then shift characters to lowercase, and
#+ finally prefix occurrence count and sort numerically.
##

Exercises for the reader:
1) Add 'sed' commands to filter out other punctuation, such as commas.
2) Modify to also filter out multiple spaces and other whitespace.
3) Add a secondary sort key, so that instances of equal occurrence
#+ are sorted alphabetically.

exit 0

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 151

bash$ cat testfile
This line occurs only once.
 This line occurs twice.
 This line occurs twice.
 This line occurs three times.
 This line occurs three times.
 This line occurs three times.

bash$./wf.sh testfile
 6 this
 6 occurs
 6 line
 3 times
 3 three
 2 twice
 1 only
 1 once

expand, unexpand

The expand filter converts tabs to spaces. It is often used in a pipe.

The unexpand filter converts spaces to tabs. This reverses the effect of expand.

cut

A tool for extracting fields from files. It is similar to the print $N command set in awk, but more
limited. It may be simpler to use cut in a script than awk. Particularly important are the
−d (delimiter) and −f (field specifier) options.

Using cut to obtain a listing of the mounted filesystems:

cat /etc/mtab | cut −d ' ' −f1,2

Using cut to list the OS and kernel version:

uname −a | cut −d" " −f1,3,11,12

Using cut to extract message headers from an e−mail folder:

bash$ grep '^Subject:' read−messages | cut −c10−80
Re: Linux suitable for mission−critical apps?
 MAKE MILLIONS WORKING AT HOME!!!
 Spam complaint
 Re: Spam complaint

Using cut to parse a file:

List all the users in /etc/passwd.

FILENAME=/etc/passwd

for user in $(cut −d: −f1 $FILENAME)
do
 echo $user

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 152

done

Thanks, Oleg Philon for suggesting this.

cut −d ' ' −f2,3 filename is equivalent to awk −F'[]' '{ print $2, $3 }'
filename

See also Example 12−29.

colrm

Column removal filter. This removes columns (characters) from a file and writes the file, lacking the
range of specified columns, back to stdout. colrm 2 4 <filename removes the second
through fourth characters from each line of the text file filename.

If the file contains tabs or nonprintable
characters, this may cause unpredictable
behavior. In such cases, consider using
expand and unexpand in a pipe preceding colrm.

paste

Tool for merging together different files into a single, multi−column file. In combination with cut,
useful for creating system log files.

join

Consider this a special−purpose cousin of paste. This powerful utility allows merging two files in a
meaningful fashion, which essentially creates a simple version of a relational database.

The join command operates on exactly two files, but pastes together only those lines with a common
tagged field (usually a numerical label), and writes the result to stdout. The files to be joined
should be sorted according to the tagged field for the matchups to work properly.

File: 1.data

100 Shoes
200 Laces
300 Socks

File: 2.data

100 $40.00
200 $1.00
300 $2.00

bash$ join 1.data 2.data
File: 1.data 2.data

 100 Shoes $40.00
 200 Laces $1.00
 300 Socks $2.00

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 153

The tagged field appears only once in the
output.

head

lists the beginning of a file to stdout (the default is 10 lines, but this can be changed). It has a
number of interesting options.

Example 12−10. Generating 10−digit random numbers

#!/bin/bash
rnd.sh: Outputs a 10−digit random number

Script by Stephane Chazelas.

head −c4 /dev/urandom | od −N4 −tu4 | sed −ne '1s/.* //p'

===

Analysis
−−−−−−−−

head:
−c4 option takes first 4 bytes.

od:
−N4 option limits output to 4 bytes.
−tu4 option selects unsigned decimal format for output.

sed:
−n option, in combination with "p" flag to the "s" command,
outputs only matched lines.

The author of this script explains the action of 'sed', as follows.

head −c4 /dev/urandom | od −N4 −tu4 | sed −ne '1s/.* //p'
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−> |

Assume output up to "sed" −−−−−−−−> |
is 0000000 1198195154\n

sed begins reading characters: 0000000 1198195154\n.
Here it finds a newline character,
so it is ready to process the first line (0000000 1198195154).
It looks at its <range><action>s. The first and only one is

range action
1 s/.* //p

The line number is in the range, so it executes the action:
tries to substitute the longest string ending with a space in the line
("0000000 ") with nothing (//), and if it succeeds, prints the result
("p" is a flag to the "s" command here, this is different from the "p" command).

sed is now ready to continue reading its input. (Note that before
continuing, if −n option had not been passed, sed would have printed

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 154

the line once again).

Now, sed reads the remainder of the characters, and finds the end of the file.
It is now ready to process its 2nd line (which is also numbered '$' as
it's the last one).
It sees it is not matched by any <range>, so its job is done.

In few word this sed commmand means:
"On the first line only, remove any character up to the right−most space,
then print it."

A better way to do this would have been:
sed −e 's/.* //;q'

Here, two <range><action>s (could have been written
sed −e 's/.* //' −e q):

range action
nothing (matches line) s/.* //
nothing (matches line) q (quit)

Here, sed only reads its first line of input.
It performs both actions, and prints the line (substituted) before quitting
(because of the "q" action) since the "−n" option is not passed.

===

A simpler altenative to the above 1−line script would be:
head −c4 /dev/urandom| od −An −tu4

exit 0

See also Example 12−27.
tail

lists the end of a file to stdout (the default is 10 lines). Commonly used to keep track of changes to a
system logfile, using the −f option, which outputs lines appended to the file.

Example 12−11. Using tail to monitor the system log

#!/bin/bash

filename=sys.log

cat /dev/null > $filename; echo "Creating / cleaning out file."
Creates file if it does not already exist,
and truncates it to zero length if it does.
: > filename also works.

tail /var/log/messages > $filename
/var/log/messages must have world read permission for this to work.

echo "$filename contains tail end of system log."

exit 0

See also Example 12−4, Example 12−27 and Example 30−5.

grep

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 155

A multi−purpose file search tool that uses regular expressions. It was originally a command/filter in the
venerable ed line editor, g/re/p, that is, global − regular expression − print.

grep pattern [file...]

Search the target file(s) for occurrences of pattern, where pattern may be literal text or a regular
expression.

bash$ grep '[rst]ystem.$' osinfo.txt
The GPL governs the distribution of the Linux operating system.

If no target file(s) specified, grep works as a filter on stdout, as in a pipe.

bash$ ps ax | grep clock
765 tty1 S 0:00 xclock
 901 pts/1 S 0:00 grep clock

The −i option causes a case−insensitive search.

The −l option lists only the files in which matches were found, but not the matching lines.

The −n option lists the matching lines, together with line numbers.

bash$ grep −n Linux osinfo.txt
2:This is a file containing information about Linux.
 6:The GPL governs the distribution of the Linux operating system.

The −v (or −−invert−match) option filters out matches.

grep pattern1 *.txt | grep −v pattern2

Matches all lines in "*.txt" files containing "pattern1",
but ***not*** "pattern2".

The −c (−−count) option gives a numerical count of matches, rather than actually listing the matches.

grep −c txt *.sgml # (number of occurrences of "txt" in "*.sgml" files)

grep −cz .
^ dot
means count (−c) zero−separated (−z) items matching "."
that is, non−empty ones (containing at least 1 character).

printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep −cz . # 4
printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep −cz '$' # 5
printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep −cz '^' # 5
#
printf 'a b\nc d\n\n\n\n\n\000\n\000e\000\000\nf' | grep −c '$' # 9
By default, newline chars (\n) separate items to match.

Note that the −z option is GNU "grep" specific.

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 156

Thanks, S.C.

When invoked with more than one target file given, grep specifies which file contains matches.

bash$ grep Linux osinfo.txt misc.txt
osinfo.txt:This is a file containing information about Linux.
 osinfo.txt:The GPL governs the distribution of the Linux operating system.
 misc.txt:The Linux operating system is steadily gaining in popularity.

To force grep to show the filename when searching only one target file, simply give
/dev/null as the second file.

bash$ grep Linux osinfo.txt /dev/null
osinfo.txt:This is a file containing information about Linux.
 osinfo.txt:The GPL governs the distribution of the Linux operating system.

If there is a successful match, grep returns an exit status of 0, which makes it useful in a condition test in a
script, especially in combination with the −q option to suppress output.

SUCCESS=0 # if grep lookup succeeds
word=Linux
filename=data.file

grep −q "$word" "$filename" # The "−q" option causes nothing to echo to stdout.

if [$? −eq $SUCCESS]
then
 echo "$word found in $filename"
else
 echo "$word not found in $filename"
fi

Example 30−5 demonstrates how to use grep to search for a word pattern in a system logfile.

Example 12−12. Emulating "grep" in a script

#!/bin/bash
grp.sh: Very crude reimplementation of 'grep'.

E_BADARGS=65

if [−z "$1"] # Check for argument to script.
then
 echo "Usage: `basename $0` pattern"
 exit $E_BADARGS
fi

echo

for file in * # Traverse all files in $PWD.
do

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 157

 output=$(sed −n /"$1"/p $file) # Command substitution.

 if [! −z "$output"] # What happens if "$output" is not quoted?
 then
 echo −n "$file: "
 echo $output
 fi # sed −ne "/$1/s|^|${file}: |p" is equivalent to above.

 echo
done

echo

exit 0

Exercises for reader:
−−−−−−−−−−−−−−−−−−−−
1) Add newlines to output, if more than one match in any given file.
2) Add features.

egrep is the same as grep −E. This uses a somewhat
different, extended set of regular expressions, which
can make the search somewhat more flexible.

fgrep is the same as grep −F. It does a literal string
search (no regular expressions), which allegedly
speeds things up a bit.

agrep extends the capabilities of grep to approximate
matching. The search string may differ by a specified
number of characters from the resulting matches. This
utility is not part of the core Linux distribution.

To search compressed files, use zgrep, zegrep, or
zfgrep. These also work on non−compressed files,
though slower than plain grep, egrep, fgrep. They are
handy for searching through a mixed set of files, some
compressed, some not.

To search bzipped files, use bzgrep.
look

The command look works like grep, but does a lookup on a "dictionary", a sorted word list. By default,
look searches for a match in /usr/dict/words, but a different dictionary file may be specified.

Example 12−13. Checking words in a list for validity

#!/bin/bash
lookup: Does a dictionary lookup on each word in a data file.

file=words.data # Data file from which to read words to test.

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 158

echo

while ["$word" != end] # Last word in data file.
do
 read word # From data file, because of redirection at end of loop.
 look $word > /dev/null # Don't want to display lines in dictionary file.
 lookup=$? # Exit status of 'look' command.

 if ["$lookup" −eq 0]
 then
 echo "\"$word\" is valid."
 else
 echo "\"$word\" is invalid."
 fi

done <"$file" # Redirects stdin to $file, so "reads" come from there.

echo

exit 0

−−
Code below line will not execute because of "exit" command above.

Stephane Chazelas proposes the following, more concise alternative:

while read word && [[$word != end]]
do if look "$word" > /dev/null
 then echo "\"$word\" is valid."
 else echo "\"$word\" is invalid."
 fi
done <"$file"

exit 0

sed, awk

Scripting languages especially suited for parsing text files and command output. May be embedded singly or
in combination in pipes and shell scripts.

sed

Non−interactive "stream editor", permits using many ex commands in batch mode. It finds many uses in shell
scripts.

awk

Programmable file extractor and formatter, good for manipulating and/or extracting fields (columns) in
structured text files. Its syntax is similar to C.

wc

wc gives a "word count" on a file or I/O stream:

bash $ wc /usr/doc/sed−3.02/README
20 127 838 /usr/doc/sed−3.02/README

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 159

[20 lines 127 words 838 characters]

wc −w gives only the word count.

wc −l gives only the line count.

wc −c gives only the character count.

wc −L gives only the length of the longest line.

Using wc to count how many .txt files are in current working directory:

$ ls *.txt | wc −l
Will work as long as none of the "*.txt" files have a linefeed in their name.

Alternative ways of doing this are:
find . −maxdepth 1 −name *.txt −print0 | grep −cz .
(shopt −s nullglob; set −− *.txt; echo $#)

Thanks, S.C.

Using wc to total up the size of all the files whose names begin with letters in the range d − h

bash$ wc [d−h]* | grep total | awk '{print $3}'
71832

Using wc to count the instances of the word "Linux" in the main source file for this book.

bash$ grep Linux abs−book.sgml | wc −l
50

See also Example 12−27 and Example 16−5.

Certain commands include some of the functionality of wc as options.

... | grep foo | wc −l
This frequently used construct can be more concisely rendered.

... | grep −c foo
Just use the "−c" (or "−−count") option of grep.

Thanks, S.C.

tr

character translation filter.

Must use quoting and/or brackets, as appropriate.
Quotes prevent the shell from reinterpreting the
special characters in tr command sequences.
Brackets should be quoted to prevent expansion by

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 160

the shell.

Either tr "A−Z" "*" <filename or tr A−Z * <filename changes all the uppercase letters in
filename to asterisks (writes to stdout). On some systems this may not work, but tr A−Z
'[**]' will.

The −d option deletes a range of characters.

tr −d 0−9 <filename
Deletes all digits from the file "filename".

The −−squeeze−repeats (or −s) option deletes all but the first instance of a string of consecutive
characters. This option is useful for removing excess whitespace.

bash$ echo "XXXXX" | tr −−squeeze−repeats 'X'
X

Example 12−14. toupper: Transforms a file to all uppercase.

#!/bin/bash
Changes a file to all uppercase.

E_BADARGS=65

if [−z "$1"] # Standard check for command line arg.
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

tr a−z A−Z <"$1"

Same effect as above, but using POSIX character set notation:
tr '[:lower:]' '[:upper:]' <"$1"
Thanks, S.C.

exit 0

Example 12−15. lowercase: Changes all filenames in working directory to lowercase.

#! /bin/bash
#
Changes every filename in working directory to all lowercase.
#
Inspired by a script of John Dubois,
which was translated into into Bash by Chet Ramey,
and considerably simplified by Mendel Cooper, author of this document.

for filename in * # Traverse all files in directory.
do
 fname=`basename $filename`
 n=`echo $fname | tr A−Z a−z` # Change name to lowercase.
 if ["$fname" != "$n"] # Rename only files not already lowercase.
 then
 mv $fname $n
 fi

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 161

done

exit 0

Code below this line will not execute because of "exit".
#−−#
To run it, delete script above line.

The above script will not work on filenames containing blanks or newlines.

Stephane Chazelas therefore suggests the following alternative:

for filename in * # Not necessary to use basename,
 # since "*" won't return any file containing "/".
do n=`echo "$filename/" | tr '[:upper:]' '[:lower:]'`
POSIX char set notation.
Slash added so that trailing newlines are not
removed by command substitution.
 # Variable substitution:
 n=${n%/} # Removes trailing slash, added above, from filename.
 [[$filename == $n]] || mv "$filename" "$n"
 # Checks if filename already lowercase.
done

exit 0

Example 12−16. du: DOS to UNIX text file conversion.

#!/bin/bash
du.sh: DOS to UNIX text file converter.

E_WRONGARGS=65

if [−z "$1"]
then
 echo "Usage: `basename $0` filename−to−convert"
 exit $E_WRONGARGS
fi

NEWFILENAME=$1.unx

CR='\015' # Carriage return.
Lines in a DOS text file end in a CR−LF.

tr −d $CR < $1 > $NEWFILENAME
Delete CR and write to new file.

echo "Original DOS text file is \"$1\"."
echo "Converted UNIX text file is \"$NEWFILENAME\"."

exit 0

Example 12−17. rot13: rot13, ultra−weak encryption.

#!/bin/bash
rot13.sh: Classic rot13 algorithm, encryption that might fool a 3−year old.

Usage: ./rot13.sh filename

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 162

or ./rot13.sh <filename
or ./rot13.sh and supply keyboard input (stdin)

cat "$@" | tr 'a−zA−Z' 'n−za−mN−ZA−M' # "a" goes to "n", "b" to "o", etc.
The 'cat "$@"' construction
permits getting input either from stdin or from files.

exit 0

Example 12−18. Generating "Crypto−Quote" Puzzles

#!/bin/bash
crypto−quote.sh: Encrypt quotes

Will encrypt famous quotes in a simple monoalphabetic substitution.
The result is similar to the "Crypto Quote" puzzles
#+ seen in the Op Ed pages of the Sunday paper.

key=ETAOINSHRDLUBCFGJMQPVWZYXK
The "key" is nothing more than a scrambled alphabet.
Changing the "key" changes the encryption.

The 'cat "$@"' construction gets input either from stdin or from files.
If using stdin, terminate input with a Control−D.
Otherwise, specify filename as command−line parameter.

cat "$@" | tr "a−z" "A−Z" | tr "A−Z" "$key"
| to uppercase | encrypt
Will work on lowercase, uppercase, or mixed−case quotes.
Passes non−alphabetic characters through unchanged.

Try this script with something like
"Nothing so needs reforming as other people's habits."
−−Mark Twain
#
Output is:
"CFPHRCS QF CIIOQ MINFMBRCS EQ FPHIM GIFGUI'Q HETRPQ."
−−BEML PZERC

To reverse the encryption:
cat "$@" | tr "$key" "A−Z"

This simple−minded cipher can be broken by an average 12−year old
#+ using only pencil and paper.

exit 0

tr variants

The tr utility has two historic variants. The BSD version does not use brackets (tr a−z A−Z), but the
SysV one does (tr '[a−z]' '[A−Z]'). The GNU version of tr resembles the BSD one, so quoting
letter ranges within brackets is mandatory.

fold

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 163

A filter that wraps lines of input to a specified width. This is especially useful with the −s option, which
breaks lines at word spaces (see Example 12−19 and Example A−2).

fmt

Simple−minded file formatter, used as a filter in a pipe to "wrap" long lines of text output.

Example 12−19. Formatted file listing.

#!/bin/bash

WIDTH=40 # 40 columns wide.

b=`ls /usr/local/bin` # Get a file listing...

echo $b | fmt −w $WIDTH

Could also have been done by
echo $b | fold − −s −w $WIDTH

exit 0

See also Example 12−4.

A powerful alternative to fmt is Kamil Toman's par utility,
available from http://www.cs.berkeley.edu/~amc/Par/.

ptx

The ptx [targetfile] command outputs a permuted index (cross−reference list) of the targetfile. This may be
further filtered and formatted in a pipe, if necessary.

column

Column formatter. This filter transforms list−type text output into a "pretty−printed" table by inserting tabs at
appropriate places.

Example 12−20. Using column to format a directory listing

#!/bin/bash
This is a slight modification of the example file in the "column" man page.

(printf "PERMISSIONS LINKS OWNER GROUP SIZE MONTH DAY HH:MM PROG−NAME\n" \
; ls −l | sed 1d) | column −t

The "sed 1d" in the pipe deletes the first line of output,
#+ which would be "total N",
#+ where "N" is the total number of files found by "ls −l".

The −t option to "column" pretty−prints a table.

exit 0

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 164

http://www.cs.berkeley.edu/~amc/Par/

nl

Line numbering filter. nl filename lists filename to stdout, but inserts consecutive numbers at the
beginning of each non−blank line. If filename omitted, operates on stdin.

Example 12−21. nl: A self−numbering script.

#!/bin/bash

This script echoes itself twice to stdout with its lines numbered.

'nl' sees this as line 3 since it does not number blank lines.
'cat −n' sees the above line as number 5.

nl `basename $0`

echo; echo # Now, let's try it with 'cat −n'

cat −n `basename $0`
The difference is that 'cat −n' numbers the blank lines.
Note that 'nl −ba' will also do so.

exit 0

pr

Print formatting filter. This will paginate files (or stdout) into sections suitable for hard copy printing or
viewing on screen. Various options permit row and column manipulation, joining lines, setting margins,
numbering lines, adding page headers, and merging files, among other things. The pr command combines
much of the functionality of nl, paste, fold, column, and expand.

pr −o 5 −−width=65 fileZZZ | more gives a nice paginated listing to screen of fileZZZ with
margins set at 5 and 65.

A particularly useful option is −d, forcing double−spacing (same effect as sed −G).

gettext

A GNU utility for localization and translating the text output of programs into foreign languages. While
primarily intended for C programs, gettext also finds use in shell scripts. See the info page.

iconv

A utility for converting file(s) to a different encoding (character set). Its chief use is for localization.

recode

Consider this a fancier version of iconv, above. This very versatile utility for converting a file to a different
encoding is not part of the standard Linux installation.

groff, gs, TeX

Groff, TeX, and Postscript are text markup languages used for preparing copy for printing or formatted video
display.

Advanced Bash−Scripting Guide

12.4. Text Processing Commands 165

Manpages use groff (see Example A−1). Ghostscript (gs) is a GPL Postscript interpreter. TeX is Donald
Knuth's elaborate typsetting system. It is often convenient to write a shell script encapsulating all the options
and arguments passed to one of these markup languages.

lex, yacc

The lex lexical analyzer produces programs for pattern matching. This has been replaced by the
nonproprietary flex on Linux systems.

The yacc utility creates a parser based on a set of specifications. This has been replaced by the nonproprietary
bison on Linux systems.

12.5. File and Archiving Commands

Archiving

tar

The standard UNIX archiving utility. Originally a Tape ARchiving program, it has developed into a
general purpose package that can handle all manner of archiving with all types of destination devices,
ranging from tape drives to regular files to even stdout (see Example 4−3). GNU tar has long since
been patched to accept gzip compression options, such as tar czvf archive−name.tar.gz *, which
recursively archives and compresses all files in a directory tree except dotfiles in the current working
directory ($PWD). [29]

Some useful tar options:

−c create (a new archive) 1.
−−delete delete (files from the archive) 2.
−r append (files to the archive) 3.
−t list (archive contents) 4.
−u update archive 5.
−x extract (files from the archive) 6.
−z gzip the archive 7.

It may be difficult to recover data from a
corrupted gzipped tar archive. When archiving
important files, make multiple backups.

shar

Shell archiving utility. The files in a shell archive are concatenated without compression, and the
resultant archive is essentially a shell script, complete with #!/bin/sh header, and containing all the
necessary unarchiving commands. Shar archives still show up in Internet newsgroups, but otherwise
shar has been pretty well replaced by tar/gzip. The unshar command unpacks shar archives.

ar

Creation and manipulation utility for archives, mainly used for binary object file libraries.

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 166

cpio

This specialized archiving copy command (copy input and output) is rarely seen any more, having
been supplanted by tar/gzip. It still has its uses, such as moving a directory tree.

Example 12−22. Using cpio to move a directory tree

#!/bin/bash

Copying a directory tree using cpio.

ARGS=2
E_BADARGS=65

if [$# −ne "$ARGS"]
then
 echo "Usage: `basename $0` source destination"
 exit $E_BADARGS
fi

source=$1
destination=$2

find "$source" −depth | cpio −admvp "$destination"
Read the man page to decipher these cpio options.

exit 0

Example 12−23. Unpacking an rpm archive

#!/bin/bash
de−rpm.sh: Unpack an 'rpm' archive

E_NO_ARGS=65
TEMPFILE=$$.cpio # Tempfile with "unique" name.
 # $$ is process ID of script.

if [−z "$1"]
then
 echo "Usage: `basename $0` filename"
exit $E_NO_ARGS
fi

rpm2cpio < $1 > $TEMPFILE # Converts rpm archive into cpio archive.
cpio −−make−directories −F $TEMPFILE −i # Unpacks cpio archive.
rm −f $TEMPFILE # Deletes cpio archive.

exit 0

Compression

gzip

The standard GNU/UNIX compression utility, replacing the inferior and proprietary compress. The
corresponding decompression command is gunzip, which is the equivalent of gzip −d.

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 167

The zcat filter decompresses a gzipped file to stdout, as possible input to a pipe or redirection.
This is, in effect, a cat command that works on compressed files (including files processed with the
older compress utility). The zcat command is equivalent to gzip −dc.

On some commercial UNIX systems, zcat is a
synonym for uncompress −c, and will not work
on gzipped files.

See also Example 7−6.

bzip2

An alternate compression utility, usually more efficient than gzip, especially on large files. The
corresponding decompression command is bunzip2.

compress, uncompress

This is an older, proprietary compression utility found in commercial UNIX distributions. The more
efficient gzip has largely replaced it. Linux distributions generally include a compress workalike for
compatibility, although gunzip can unarchive files treated with compress.

The znew command transforms compressed files
into gzipped ones.

sq

Yet another compression utility, a filter that works only on sorted ASCII word lists. It uses the
standard invocation syntax for a filter, sq < input−file > output−file. Fast, but not nearly as efficient
as gzip. The corresponding uncompression filter is unsq, invoked like sq.

The output of sq may be piped to gzip for further
compression.

zip, unzip

Cross−platform file archiving and compression utility compatible with DOS PKZIP.
"Zipped" archives seem to be a more acceptable medium of exchange on the Internet than "tarballs".

File Information

file

A utility for identifying file types. The command file file−name will return a file specification
for file−name, such as ascii text or data . It references the magic numbers found in
/usr/share/magic, /etc/magic, or /usr/lib/magic, depending on the Linux/UNIX
distribution.

The −f option causes file to run in batch mode, to read from a designated file a list of filenames to
analyze. The −z option, when used on a compressed target file, forces an attempt to analyze the

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 168

uncompressed file type.

bash$ file test.tar.gz
test.tar.gz: gzip compressed data, deflated, last modified: Sun Sep 16 13:34:51 2001, os: Unix

bash file −z test.tar.gz
test.tar.gz: GNU tar archive (gzip compressed data, deflated, last modified: Sun Sep 16 13:34:51 2001, os: Unix)

Example 12−24. stripping comments from C program files

#!/bin/bash
strip−comment.sh: Strips out the comments (/* COMMENT */) in a C program.

E_NOARGS=65
E_ARGERROR=66
E_WRONG_FILE_TYPE=67

if [$# −eq "$E_NOARGS"]
then
 echo "Usage: `basename $0` C−program−file" >&2 # Error message to stderr.
 exit $E_ARGERROR
fi

Test for correct file type.
type=`eval file $1 | awk '{ print $2, $3, $4, $5 }'`
"file $1" echoes file type...
then awk removes the first field of this, the filename...
then the result is fed into the variable "type".
correct_type="ASCII C program text"

if ["$type" != "$correct_type"]
then
 echo
 echo "This script works on C program files only."
 echo
 exit $E_WRONG_FILE_TYPE
fi

Rather cryptic sed script:
#−−−−−−−−
sed '
/^\/*/d
/.*\/*/d
' $1
#−−−−−−−−
Easy to understand if you take several hours to learn sed fundamentals.

Need to add one more line to the sed script to deal with
case where line of code has a comment following it on same line.
This is left as a non−trivial exercise for the reader.

Also, the above code deletes lines with a "*/" or "/*",
not a desirable result.

exit 0

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 169

−−
Code below this line will not execute because of 'exit 0' above.

Stephane Chazelas suggests the following alternative:

usage() {
 echo "Usage: `basename $0` C−program−file" >&2
 exit 1
}

WEIRD=`echo −n −e '\377'` # or WEIRD=$'\377'
[[$# −eq 1]] || usage
case `file "$1"` in
 "C program text") sed −e "s%/*%${WEIRD}%g;s%*/%${WEIRD}%g" "$1" \
 | tr '\377\n' '\n\377' \
 | sed −ne 'p;n' \
 | tr −d '\n' | tr '\377' '\n';;
 *) usage;;
esac

This is still fooled by things like:
printf("/*");
or
/* /* buggy embedded comment */
#
To handle all special cases (comments in strings, comments in string
where there is a \", \\" ...) the only way is to write a C parser
(lex or yacc perhaps?).

exit 0

which

which command−xxx gives the full path to "command−xxx". This is useful for finding out whether
a particular command or utility is installed on the system.

$bash which rm

/usr/bin/rm

whereis

Similar to which, above, whereis command−xxx gives the full path to "command−xxx", but also to
its manpage.

$bash whereis rm

rm: /bin/rm /usr/share/man/man1/rm.1.bz2

whatis

whatis filexxx looks up "filexxx" in the whatis database. This is useful for identifying system
commands and important configuration files. Consider it a simplified man command.

$bash whatis whatis

whatis (1) − search the whatis database for complete words

Example 12−25. Exploring /usr/X11R6/bin

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 170

#!/bin/bash

What are all those mysterious binaries in /usr/X11R6/bin?

DIRECTORY="/usr/X11R6/bin"
Try also "/bin", "/usr/bin", "/usr/local/bin", etc.

for file in $DIRECTORY/*
do
 whatis `basename $file` # Echoes info about the binary.
done

exit 0
You may wish to redirect output of this script, like so:
./what.sh >>whatis.db
or view it a page at a time on stdout,
./what.sh | less

See also Example 10−3.

vdir

Show a detailed directory listing. The effect is similar to ls −l.

This is one of the GNU fileutils.

bash$ vdir
total 10
 −rw−r−−r−− 1 bozo bozo 4034 Jul 18 22:04 data1.xrolo
 −rw−r−−r−− 1 bozo bozo 4602 May 25 13:58 data1.xrolo.bak
 −rw−r−−r−− 1 bozo bozo 877 Dec 17 2000 employment.xrolo

bash ls −l
total 10
 −rw−r−−r−− 1 bozo bozo 4034 Jul 18 22:04 data1.xrolo
 −rw−r−−r−− 1 bozo bozo 4602 May 25 13:58 data1.xrolo.bak
 −rw−r−−r−− 1 bozo bozo 877 Dec 17 2000 employment.xrolo

shred

Securely erase a file by overwriting it multiple times with random bit patterns before deleting it. This
command has the same effect as Example 12−34, but does it in a more thorough and elegant manner.

This is one of the GNU fileutils.

Using shred on a file may not prevent recovery
of some or all of its contents using advanced
forensic technology.

locate, slocate

The locate command searches for files using a database stored for just that purpose. The
slocate command is the secure version of locate (which may be aliased to slocate).

$bash locate hickson

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 171

/usr/lib/xephem/catalogs/hickson.edb

strings

Use the strings command to find printable strings in a binary or data file. It will list sequences of
printable characters found in the target file. This might be handy for a quick 'n dirty examination of a
core dump or for looking at an unknown graphic image file (strings image−file |
more might show something like JFIF, which would identify the file as a jpeg graphic). In a script,
you would probably parse the output of strings with grep or sed. See Example 10−7 and Example
10−8.

Utilities

basename

Strips the path information from a file name, printing only the file name. The construction
basename $0 lets the script know its name, that is, the name it was invoked by. This can be used
for "usage" messages if, for example a script is called with missing arguments:

echo "Usage: `basename $0` arg1 arg2 ... argn"

dirname

Strips the basename from a filename, printing only the path information.

basename and dirname can operate on any
arbitrary string. The argument does not need to
refer to an existing file, or even be a filename for
that matter (see Example A−6).

Example 12−26. basename and dirname

#!/bin/bash

a=/home/bozo/daily−journal.txt

echo "Basename of /home/bozo/daily−journal.txt = `basename $a`"
echo "Dirname of /home/bozo/daily−journal.txt = `dirname $a`"
echo
echo "My own home is `basename ~/`." # Also works with just ~.
echo "The home of my home is `dirname ~/`." # Also works with just ~.

exit 0

split

Utility for splitting a file into smaller chunks. Usually used for splitting up large files in order to back
them up on floppies or preparatory to e−mailing or uploading them.

sum, cksum, md5sum

These are utilities for generating checksums. A checksum is a number mathematically calculated
from the contents of a file, for the purpose of checking its integrity. A script might refer to a list of
checksums for security purposes, such as ensuring that the contents of key system files have not been

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 172

altered or corrupted. The md5sum command is the most appropriate of these in security applications.

Encoding and Encryption

uuencode

This utility encodes binary files into ASCII characters, making them suitable for transmission in the
body of an e−mail message or in a newsgroup posting.

uudecode

This reverses the encoding, decoding uuencoded files back into the original binaries.

Example 12−27. uudecoding encoded files

#!/bin/bash

lines=35 # Allow 35 lines for the header (very generous).

for File in * # Test all the files in the current working directory...
do
 search1=`head −$lines $File | grep begin | wc −w`
 search2=`tail −$lines $File | grep end | wc −w`
 # Uuencoded files have a "begin" near the beginning,
 #+ and an "end" near the end.
 if ["$search1" −gt 0]
 then
 if ["$search2" −gt 0]
 then
 echo "uudecoding − $File −"
 uudecode $File
 fi
 fi
done

Note that running this script upon itself fools it
#+ into thinking it is a uuencoded file,
#+ because it contains both "begin" and "end".

Exercise:
Modify this script to check for a newsgroup header.

exit 0

The fold −s command may be useful (possibly in
a pipe) to process long uudecoded text messages
downloaded from Usenet newsgroups.

crypt

At one time, this was the standard UNIX file encryption utility. [30] Politically motivated
government regulations prohibiting the export of encryption software resulted in the disappearance of
crypt from much of the UNIX world, and it is still missing from most Linux distributions.
Fortunately, programmers have come up with a number of decent alternatives to it, among them the

Advanced Bash−Scripting Guide

12.5. File and Archiving Commands 173

author's very own cruft (see Example A−4).

Miscellaneous

make

Utility for building and compiling binary packages. This can also be used for any set of operations
that is triggered by incremental changes in source files.

The make command checks a Makefile, a list of file dependencies and operations to be carried out.

install

Special purpose file copying command, similar to cp, but capable of setting permissions and
attributes of the copied files. This command seems tailormade for installing software packages, and
as such it shows up frequently in Makefiles (in the make install : section). It could
likewise find use in installation scripts.

more, less

Pagers that display a text file or stream to stdout, one screenful at a time. These may be used to
filter the output of a script.

12.6. Communications Commands

Information and Statistics

host

Searches for information about an Internet host by name or IP address, using DNS.

vrfy

Verify an Internet e−mail address.

nslookup

Do an Internet "name server lookup" on a host by IP address. This may be run either interactively or
noninteractively, i.e., from within a script.

dig

Similar to nslookup, do an Internet "name server lookup" on a host. May be run either interactively
or noninteractively, i.e., from within a script.

traceroute

Advanced Bash−Scripting Guide

12.6. Communications Commands 174

ftp://metalab.unc.edu/pub/Linux/utils/file/cruft-0.2.tar.gz

Trace the route taken by packets sent to a remote host. This command works within a LAN, WAN, or
over the Internet. The remote host may be specified by an IP address. The output of this command
may be filtered by grep or sed in a pipe.

ping

Broadcast an "ICMP ECHO_REQUEST" packet to other machines, either on a local or remote
network. This is a diagnostic tool for testing network connections, and it should be used with caution.

A successful ping returns an exit status of 0. This can be tested for in a script.

bash$ ping localhost
PING localhost.localdomain (127.0.0.1) from 127.0.0.1 : 56(84) bytes of data.
 Warning: time of day goes back, taking countermeasures.
 64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=0 ttl=255 time=709 usec
 64 bytes from localhost.localdomain (127.0.0.1): icmp_seq=1 ttl=255 time=286 usec

 −−− localhost.localdomain ping statistics −−−
 2 packets transmitted, 2 packets received, 0% packet loss
 round−trip min/avg/max/mdev = 0.286/0.497/0.709/0.212 ms

whois

Perform a DNS (Domain Name System) lookup. The −h option permits specifying which
whois server to query. See Example 5−6.

finger

Retrieve information about a particular user on a network. Optionally, this command can display the
user's ~/.plan, ~/.project, and ~/.forward files, if present.

bash$ finger bozo
Login: bozo Name: Bozo Bozeman
 Directory: /home/bozo Shell: /bin/bash
 On since Fri Aug 31 20:13 (MST) on tty1 1 hour 38 minutes idle
 On since Fri Aug 31 20:13 (MST) on pts/0 12 seconds idle
 On since Fri Aug 31 20:13 (MST) on pts/1
 On since Fri Aug 31 20:31 (MST) on pts/2 1 hour 16 minutes idle
 No mail.
 No Plan.

Out of security considerations, many networks disable finger and its associated daemon. [31]

Remote Host Access

sx, rx

The sx and rx command set serves to transfer files to and from a remote host using the
xmodem protocol. These are generally part of a communications package, such as minicom.

sz, rz

Advanced Bash−Scripting Guide

12.6. Communications Commands 175

The sz and rz command set serves to transfer files to and from a remote host using the
zmodem protocol. Zmodem has certain advantages over xmodem, such as greater transmission rate
and resumption of interrupted file transfers. Like sx and rx, these are generally part of a
communications package.

ftp

Utility and protocol for uploading / downloading files to / from a remote host. An ftp session can be
automated in a script (see Example 17−7, Example A−4, and Example A−8).

cu

Call Up a remote system and connect as a simple terminal. This is a sort of dumbed−down version of
telnet.

uucp

UNIX to UNIX copy. This is a communications package for transferring files between UNIX servers.
A shell script is an effective way to handle a uucp command sequence.

Since the advent of the Internet and e−mail, uucp seems to have faded into obscurity, but it still
exists and remains perfectly workable in situations where an Internet connection is not available or
appropriate.

telnet

Utility and protocol for connecting to a remote host.

The telnet protocol contains security holes and
should therefore probably be avoided.

rlogin

Remote login, initates a session on a remote host. This command has security issues, so use
ssh instead.

rsh

Remote shell, executes command(s) on a remote host. This has security issues, so use
ssh instead.

rcp

Remote copy, copies files between two different networked machines. Using rcp and similar
utilities with security implications in a shell script may not be advisable. Consider, instead, using
ssh or an expect script.

ssh

Secure shell, logs onto a remote host and executes commands there. This secure replacement

Advanced Bash−Scripting Guide

12.6. Communications Commands 176

for telnet, rlogin, rcp, and rsh uses identity authentication and encryption. See its manpage for
details.

Local Network

write

This is a utility for terminal−to−terminal communication. It allows sending lines from your terminal
(console or xterm) to that of another user. The mesg command may, of course, be used to disable
write access to a terminal

Since write is interactive, it would not normally find use in a script.

Mail

vacation

This utility automatically replies to e−mails that the intended recipient is on vacation and temporarily
unavailable. This runs on a network, in conjunction with sendmail, and is not applicable to a dial−up
POPmail account.

12.7. Terminal Control Commands

Command Listing

tput

Initialize terminal and/or fetch information about it from terminfo data. Various options permit
certain terminal operations. tput clear is the equivalent of clear, below. tput reset is the equivalent
of reset, below.

bash$ tput longname
xterm terminal emulator (XFree86 4.0 Window System)

Note that stty offers a more powerful command set for controlling a terminal.

reset

Reset terminal parameters and clear text screen. As with clear, the cursor and prompt reappear in the
upper lefthand corner of the terminal.

clear

The clear command simply clears the text screen at the console or in an xterm. The prompt and
cursor reappear at the upper lefthand corner of the screen or xterm window. This command may be
used either at the command line or in a script. See Example 10−23.

script

Advanced Bash−Scripting Guide

12.7. Terminal Control Commands 177

This utility records (saves to a file) all the user keystrokes at the command line in a console or an
xterm window. This, in effect, create a record of a session.

12.8. Math Commands

Command Listing

factor

Decompose an integer into prime factors.

bash$ factor 27417
27417: 3 13 19 37

bc, dc

These are flexible, arbitrary precision calculation utilities.

bc has a syntax vaguely resembling C.

dc uses RPN ("Reverse Polish Notation").

Of the two, bc seems more useful in scripting. It is a fairly well−behaved UNIX utility, and may
therefore be used in a pipe.

Bash can't handle floating point calculations, and it lacks operators for certain important
mathematical functions. Fortunately, bc comes to the rescue.

Here is a simple template for using bc to calculate a script variable. This uses command substitution.

variable=$(echo "OPTIONS; OPERATIONS" | bc)

Example 12−28. Monthly Payment on a Mortgage

#!/bin/bash
monthlypmt.sh: Calculates monthly payment on a mortgage.

This is a modification of code in the "mcalc" (mortgage calculator) package,
by Jeff Schmidt and Mendel Cooper (yours truly, the author of this document).
http://www.ibiblio.org/pub/Linux/apps/financial/mcalc−1.6.tar.gz [15k]

echo
echo "Given the principal, interest rate, and term of a mortgage,"
echo "calculate the monthly payment."

bottom=1.0

echo
echo −n "Enter principal (no commas) "
read principal

Advanced Bash−Scripting Guide

12.8. Math Commands 178

echo −n "Enter interest rate (percent) " # If 12%, enter "12", not ".12".
read interest_r
echo −n "Enter term (months) "
read term

 interest_r=$(echo "scale=9; $interest_r/100.0" | bc) # Convert to decimal.
 # "scale" determines how many decimal places.

 interest_rate=$(echo "scale=9; $interest_r/12 + 1.0" | bc)

 top=$(echo "scale=9; $principal*$interest_rate^$term" | bc)

 echo; echo "Please be patient. This may take a while."

 let "months = $term − 1"
 for ((x=$months; x > 0; x−−))
 do
 bot=$(echo "scale=9; $interest_rate^$x" | bc)
 bottom=$(echo "scale=9; $bottom+$bot" | bc)
bottom = $(($bottom + $bot"))
 done

 # let "payment = $top/$bottom"
 payment=$(echo "scale=2; $top/$bottom" | bc)
 # Use two decimal places for dollars and cents.

 echo
 echo "monthly payment = \$$payment" # Echo a dollar sign in front of amount.
 echo

 exit 0

 # Exercises:
 # 1) Filter input to permit commas in principal amount.
 # 2) Filter input to permit interest to be entered as percent or decimal.
 # 3) If you are really ambitious,
 # expand this script to print complete amortization tables.

Example 12−29. Base Conversion

:
##
Shellscript: base.sh − print number to different bases (Bourne Shell)
Author : Heiner Steven (heiner.steven@odn.de)
Date : 07−03−95
Category : Desktop
$Id: base.sh,v 1.2 2000/02/06 19:55:35 heiner Exp $
##
Description
#
Changes
21−03−95 stv fixed error occuring with 0xb as input (0.2)
##

==> Used in this document with the script author's permission.
==> Comments added by document author.

Advanced Bash−Scripting Guide

12.8. Math Commands 179

NOARGS=65
PN=`basename "$0"` # Program name
VER=`echo '$Revision: 1.2 $' | cut −d' ' −f2` # ==> VER=1.2

Usage () {
 echo "$PN − print number to different bases, $VER (stv '95)
usage: $PN [number ...]

If no number is given, the numbers are read from standard input.
A number may be
 binary (base 2) starting with 0b (i.e. 0b1100)
 octal (base 8) starting with 0 (i.e. 014)
 hexadecimal (base 16) starting with 0x (i.e. 0xc)
 decimal otherwise (i.e. 12)" >&2
 exit $NOARGS
} # ==> Function to print usage message.

Msg () {
 for i # ==> in [list] missing.
 do echo "$PN: $i" >&2
 done
}

Fatal () { Msg "$@"; exit 66; }

PrintBases () {
 # Determine base of the number
 for i # ==> in [list] missing...
 do # ==> so operates on command line arg(s).
 case "$i" in
 0b*) ibase=2;; # binary
 0x*|[a−f]*|[A−F]*) ibase=16;; # hexadecimal
 0*) ibase=8;; # octal
 [1−9]*) ibase=10;; # decimal
 *)
 Msg "illegal number $i − ignored"
 continue;;
 esac

 # Remove prefix, convert hex digits to uppercase (bc needs this)
 number=`echo "$i" | sed −e 's:^0[bBxX]::' | tr '[a−f]' '[A−F]'`
 # ==> Uses ":" as sed separator, rather than "/".

 # Convert number to decimal
 dec=`echo "ibase=$ibase; $number" | bc` # ==> 'bc' is calculator utility.
 case "$dec" in
 [0−9]*) ;; # number ok
 *) continue;; # error: ignore
 esac

 # Print all conversions in one line.
 # ==> 'here document' feeds command list to 'bc'.
 echo `bc <<!
 obase=16; "hex="; $dec
 obase=10; "dec="; $dec
 obase=8; "oct="; $dec
 obase=2; "bin="; $dec
!
 ` | sed −e 's: : :g'

 done
}

Advanced Bash−Scripting Guide

12.8. Math Commands 180

while [$# −gt 0]
do
 case "$1" in
 −−) shift; break;;
 −h) Usage;; # ==> Help message.
 −*) Usage;;
 *) break;; # first number
 esac # ==> More error checking for illegal input would be useful.
 shift
done

if [$# −gt 0]
then
 PrintBases "$@"
else # read from stdin
 while read line
 do
 PrintBases $line
 done
fi

An alternate method of invoking bc involves using a here document embedded within a command
substitution block. This is especially appropriate when a script needs to pass a list of options and
commands to bc.

variable=`bc << LIMIT_STRING
options
statements
operations
LIMIT_STRING
`

...or...

variable=$(bc << LIMIT_STRING
options
statements
operations
LIMIT_STRING
)

Example 12−30. Another way to invoke bc

#!/bin/bash
Invoking 'bc' using command substitution
in combination with a 'here document'.

var1=`bc << EOF
18.33 * 19.78
EOF
`
echo $var1 # 362.56

$(...) notation also works.
v1=23.53
v2=17.881

Advanced Bash−Scripting Guide

12.8. Math Commands 181

v3=83.501
v4=171.63

var2=$(bc << EOF
scale = 4
a = ($v1 + $v2)
b = ($v3 * $v4)
a * b + 15.35
EOF
)
echo $var2 # 593487.8452

var3=$(bc −l << EOF
scale = 9
s (1.7)
EOF
)
Returns the sine of 1.7 radians.
The "−l" option calls the 'bc' math library.
echo $var3 # .991664810

Now, try it in a function...
hyp= # Declare global variable.
hypotenuse () # Calculate hypotenuse of a right triangle.
{
hyp=$(bc −l << EOF
scale = 9
sqrt ($1 * $1 + $2 * $2)
EOF
)
Unfortunately, can't return floating point values from a Bash function.
}

hypotenuse 3.68 7.31
echo "hypotenuse = $hyp" # 8.184039344

exit 0

awk

Yet another way of doing floating point math in a script is using awk's built−in math functions in a
shell wrapper.

Example 12−31. Calculating the hypotenuse of a triangle

#!/bin/bash
hypotenuse.sh: Returns the "hypotenuse" of a right triangle.
(square root of sum of squares of the "legs")

ARGS=2 # Script needs sides of triangle passed.
E_BADARGS=65 # Wrong number of arguments.

if [$# −ne "$ARGS"] # Test number of arguments to script.
then
 echo "Usage: `basename $0` side_1 side_2"
 exit $E_BADARGS
fi

Advanced Bash−Scripting Guide

12.8. Math Commands 182

AWKSCRIPT=' { printf("%3.7f\n", sqrt($1*$1 + $2*$2)) } '
command(s) / parameters passed to awk

echo −n "Hypotenuse of $1 and $2 = "
echo $1 $2 | awk "$AWKSCRIPT"

exit 0

12.9. Miscellaneous Commands

Command Listing

jot, seq

These utilities emit a sequence of integers, with a user selected increment. This can be used to
advantage in a for loop.

Example 12−32. Using seq to generate loop arguments

#!/bin/bash

for a in `seq 80` # or for a in $(seq 80)
Same as for a in 1 2 3 4 5 ... 80 (saves much typing!).
May also use 'jot' (if present on system).
do
 echo −n "$a "
done
Example of using the output of a command to generate
the [list] in a "for" loop.

echo; echo

COUNT=80 # Yes, 'seq' may also take a replaceable parameter.

for a in `seq $COUNT` # or for a in $(seq $COUNT)
do
 echo −n "$a "
done

echo

exit 0

run−parts

The run−parts command [32] executes all the scripts in a target directory, sequentially in
ASCII−sorted filename order. Of course, the scripts need to have execute permission.

The crond daemon invokes run−parts to run the scripts in the /etc/cron.* directories.

yes

Advanced Bash−Scripting Guide

12.9. Miscellaneous Commands 183

In its default behavior the yes command feeds a continuous string of the character y followed by a
line feed to stdout. A control−c terminates the run. A different output string may be specified, as
in yes different string, which would continually output different string to
stdout. One might well ask the purpose of this. From the command line or in a script, the output of
yes can be redirected or piped into a program expecting user input. In effect, this becomes a sort of
poor man's version of expect.

yes | fsck /dev/hda1 runs fsck non−interactively (careful!).

yes | rm −r dirname has same effect as rm −rf dirname (careful!).

Be very cautious when piping yes to a
potentially dangerous system command, such as
fsck or fdisk.

banner

Prints arguments as a large vertical banner to stdout, using an ASCII character (default '#'). This
may be redirected to a printer for hardcopy.

printenv

Show all the environmental variables set for a particular user.

bash$ printenv | grep HOME
HOME=/home/bozo

lp

The lp and lpr commands send file(s) to the print queue, to be printed as hard copy. [33] These
commands trace the origin of their names to the line printers of another era.

bash$ lp file1.txt or bash lp <file1.txt

It is often useful to pipe the formatted output from pr to lp.

bash$ pr −options file1.txt | lp

Formatting packages, such as groff and Ghostscript may send their output directly to lp.

bash$ groff −Tascii file.tr | lp

bash$ gs −options | lp file.ps

Related commands are lpq, for viewing the print queue, and lprm, for removing jobs from the print
queue.

tee

[UNIX borrows an idea here from the plumbing trade.]

Advanced Bash−Scripting Guide

12.9. Miscellaneous Commands 184

This is a redirection operator, but with a difference. Like the plumber's tee, it permits "siponing
off" the output of a command or commands within a pipe, but without affecting the result. This is
useful for printing an ongoing process to a file or paper, perhaps to keep track of it for debugging
purposes.

 tee
 |−−−−−−> to file
 |
 ===============|===============
 command−−−>−−−−|−operator−−>−−−> result of command(s)
 ===============================

cat listfile* | sort | tee check.file | uniq > result.file

(The file check.file contains the concatenated sorted "listfiles", before the duplicate lines are
removed by uniq.)

mkfifo

This obscure command creates a named pipe, a temporary first−in−first−out buffer for transferring
data between processes. [34] Typically, one process writes to the FIFO, and the other reads from it.
See Example A−10.

pathchk

This command checks the validity of a filename. If the filename exceeds the maximum allowable
length (255 characters) or one or more of the directories in its path is not searchable, then an error
message results. Unfortunately, pathchk does not return a recognizable error code, and it is therefore
pretty much useless in a script.

dd

This is the somewhat obscure and much feared "data duplicator" command. Originally a utility for
exchanging data on magnetic tapes between UNIX minicomputers and IBM mainframes, this
command still has its uses. The dd command simply copies a file (or stdin/stdout), but with
conversions. Possible conversions are ASCII/EBCDIC, [35] upper/lower case, swapping of byte pairs
between input and output, and skipping and/or truncating the head or tail of the input file. A dd
−−help lists the conversion and other options that this powerful utility takes.

Exercising 'dd'.

n=3
p=5
input_file=project.txt
output_file=log.txt

dd if=$input_file of=$output_file bs=1 skip=$((n−1)) count=$((p−n+1)) 2> /dev/null
Extracts characters n to p from file $input_file.

echo −n "hello world" | dd cbs=1 conv=unblock 2> /dev/null
Echoes "hello world" vertically.

Advanced Bash−Scripting Guide

12.9. Miscellaneous Commands 185

Thanks, S.C.

To demonstrate just how versatile dd is, let's use it to capture keystrokes.

Example 12−33. Capturing Keystrokes

#!/bin/bash
Capture keystrokes without needing to press ENTER.

keypresses=4 # Number of keypresses to capture.

old_tty_setting=$(stty −g) # Save old terminal settings.

echo "Press $keypresses keys."
stty −icanon −echo # Disable canonical mode.
 # Disable local echo.
keys=$(dd bs=1 count=$keypresses 2> /dev/null)
'dd' uses stdin, if "if" not specified.

stty "$old_tty_setting" # Restore old terminal settings.

echo "You pressed the \"$keys\" keys."

Thanks, S.C. for showing the way.
exit 0

The dd command can do random access on a data stream.

echo −n . | dd bs=1 seek=4 of=file conv=notrunc
The "conv=notrunc" option means that the output file will not be truncated.

Thanks, S.C.

The dd command can copy raw data and disk images to and from devices, such as floppies and tape
drives (Example A−5). A common use is creating boot floppies.

dd if=kernel−image of=/dev/fd0H1440

Similarly, dd can copy the entire contents of a floppy, even one formatted with a "foreign" OS, to the
hard drive as an image file.

dd if=/dev/fd0 of=/home/bozo/projects/floppy.img

Other applications of dd include initializing temporary swap files (Example 29−2) and ramdisks
(Example 29−3). It can even do a low−level copy of an entire hard drive partition, although this is not
necessarily recommended.

People (with presumably nothing better to do with their time) are constantly thinking of interesting
applications of dd.

Example 12−34. Securely deleting a file

Advanced Bash−Scripting Guide

12.9. Miscellaneous Commands 186

#!/bin/bash
blotout.sh: Erase all traces of a file.

This script overwrites a target file alternately
#+ with random bytes, then zeros before finally deleting it.
After that, even examining the raw disk sectors
#+ will not reveal the original file data.

PASSES=7 # Number of file−shredding passes.
BLOCKSIZE=1 # I/O with /dev/urandom requires unit block size,
 #+ otherwise you get weird results.
E_BADARGS=70
E_NOT_FOUND=71
E_CHANGED_MIND=72

if [−z "$1"] # No filename specified.
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

file=$1

if [! −e "$file"]
then
 echo "File \"$file\" not found."
 exit $E_NOT_FOUND
fi

echo; echo −n "Are you absolutely sure you want to blot out \"$file\" (y/n)? "
read answer
case "$answer" in
[nN]) echo "Changed your mind, huh?"
 exit $E_CHANGED_MIND
 ;;
*) echo "Blotting out file \"$file\".";;
esac

flength=$(ls −l "$file" | awk '{print $5}') # Field 5 is file length.

pass_count=1

echo

while ["$pass_count" −le "$PASSES"]
do
 echo "Pass #$pass_count"
 sync # Flush buffers.
 dd if=/dev/urandom of=$file bs=$BLOCKSIZE count=$flength
 # Fill with random bytes.
 sync # Flush buffers again.
 dd if=/dev/zero of=$file bs=$BLOCKSIZE count=$flength
 # Fill with zeros.
 sync # Flush buffers yet again.
 let "pass_count += 1"
 echo
done

rm −f $file # Finally, delete scrambled and shredded file.
sync # Flush buffers a final time.

Advanced Bash−Scripting Guide

12.9. Miscellaneous Commands 187

echo "File \"$file\" blotted out and deleted."; echo

This is a fairly secure, if inefficient and slow method
#+ of thoroughly "shredding" a file. The "shred" command,
#+ part of the GNU "fileutils" package, does the same thing,
#+ but more efficiently.

The file cannot not be "undeleted" or retrieved by normal methods.
However...
#+ this simple method will likely *not* withstand forensic analysis.

Tom Vier's "wipe" file−deletion package does a much more thorough job
#+ of file shredding than this simple script.
http://www.ibiblio.org/pub/Linux/utils/file/wipe−2.0.0.tar.bz2

For an in−depth analysis on the topic of file deletion and security,
#+ see Peter Gutmann's paper,
#+ "Secure Deletion of Data From Magnetic and Solid−State Memory".
http://www.cs.auckland.ac.nz/~pgut001/secure_del.html

exit 0

od

The od, or octal dump filter converts input (or files) to octal (base−8) or other bases. This is useful
for viewing or processing binary data files or otherwise unreadable system device files, such as
/dev/urandom , and as a filter for binary data. See Example 9−22 and Example 12−10.

hexdump

Performs a hexadecimal, octal, decimal, or ASCII dump of a binary file. This command is the rough
equivalent of od, above, but not nearly as useful.

m4

A hidden treasure, m4 is a powerful macro processor [36] utility, virtually a complete language. In
fact, m4 combines some of the functionality of eval, tr, and awk.

Example 12−35. Using m4

#!/bin/bash
m4.sh: Using the m4 macro processor

Strings
string=abcdA01
echo "len($string)" | m4 # 7
echo "substr($string,4)" | m4 # A01
echo "regexp($string,[0−1][0−1],\&Z)" | m4 # 01Z

Arithmetic
echo "incr(22)" | m4 # 23
echo "eval(99 / 3)" | m4 # 33

exit 0

Advanced Bash−Scripting Guide

12.9. Miscellaneous Commands 188

Advanced Bash−Scripting Guide

12.9. Miscellaneous Commands 189

Chapter 13. System and Administrative Commands
The startup and shutdown scripts in /etc/rc.d illustrate the uses (and usefulness) of many of these
comands. These are usually invoked by root and used for system maintenance or emergency filesystem
repairs. Use with caution, as some of these commands may damage your system if misused.

Users and Groups

chown, chgrp

The chown command changes the ownership of a file or files. This command is a useful method that
root can use to shift file ownership from one user to another. An ordinary user may not change the
ownership of files, not even her own files. [37]

root# chown bozo *.txt

The chgrp command changes the group ownership of a file or files. You must be owner of the
file(s) as well as a member of the destination group (or root) to use this operation.

chgrp −−recursive dunderheads *.data
The "dunderheads" group will now own all the "*.data" files
#+ all the way down the $PWD directory tree (that's what "recursive" means).

useradd, userdel

The useradd administrative command adds a user account to the system and creates a home directory
for that particular user, if so specified. The corresponding userdel command removes a user account
from the system [38] and deletes associated files.

The adduser command is a synonym for
useradd and is usually a symbolic link to it.

id

The id command lists the real and effective user IDs and the group IDs of the current user. This is the
counterpart to the $UID, $EUID, and $GROUPS internal Bash variables.

bash$ id
uid=501(bozo) gid=501(bozo) groups=501(bozo),22(cdrom),80(cdwriter),81(audio)

bash$ echo $UID
501

Also see Example 9−4.

who

Show all users logged on to the system.

bash$ who

Chapter 13. System and Administrative Commands 190

bozo tty1 Apr 27 17:45
 bozo pts/0 Apr 27 17:46
 bozo pts/1 Apr 27 17:47
 bozo pts/2 Apr 27 17:49

The −m gives detailed information about only the current user. Passing any two arguments to who is
the equivalent of who −m, as in who am i or who The Man.

bash$ who −m
localhost.localdomain!bozo pts/2 Apr 27 17:49

whoami is similar to who −m, but only lists the user name.

bash$ whoami
bozo

w

Show all logged on users and the processes belonging to them. This is an extended version of who.
The output of w may be piped to grep to find a specific user and/or process.

bash$ w | grep startx
bozo tty1 − 4:22pm 6:41 4.47s 0.45s startx

logname

Show current user's login name (as found in /var/run/utmp). This is a near−equivalent to
whoami, above.

bash$ logname
bozo

bash$ whoami
bozo

However...

bash$ su
Password:

bash# whoami
root
bash# logname
bozo

su

Runs a program or script as a substitute user. su rjones starts a shell as user rjones. A naked
su defaults to root. See Example A−10.

users

Show all logged on users. This is the approximate equivalent of who −q.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 191

ac

Show users' logged in time, as read from /var/log/wtmp. This is one of the GNU accounting
utilities.

bash$ ac
 total 68.08

last

List last logged in users, as read from /var/log/wtmp. This command can also show remote
logins.

groups

Lists the current user and the groups she belongs to. This corresponds to the $GROUPS internal
variable, but gives the group names, rather than the numbers.

bash$ groups
bozita cdrom cdwriter audio xgrp

bash$ echo $GROUPS
501

newgrp

Change user's group ID without logging out. This permits access to the new group's files. Since users
may be members of multiple groups simultaneously, this command finds little use.

Terminals

tty

Echoes the name of the current user's terminal. Note that each separate xterm window counts as a
different terminal.

bash$ tty
/dev/pts/1

stty

Shows and/or changes terminal settings. This complex command, used in a script, can control
terminal behavior and the way output displays. See the info page, and study it carefully.

Example 13−1. setting an erase character

#!/bin/bash
erase.sh: Using "stty" to set an erase character when reading input.

echo −n "What is your name? "
read name # Try to erase characters of input.
 # Won't work.
echo "Your name is $name."

stty erase '#' # Set "hashmark" (#) as erase character.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 192

echo −n "What is your name? "
read name # Use # to erase last character typed.
echo "Your name is $name."

exit 0

Example 13−2. secret password: Turning off terminal echoing

#!/bin/bash

echo
echo −n "Enter password "
read passwd
echo "password is $passwd"
echo −n "If someone had been looking over your shoulder, "
echo "your password would have been compromised."

echo && echo # Two line−feeds in an "and list".

stty −echo # Turns off screen echo.

echo −n "Enter password again "
read passwd
echo
echo "password is $passwd"
echo

stty echo # Restores screen echo.

exit 0

A creative use of stty is detecting a user keypress (without hitting ENTER).

Example 13−3. Keypress detection

#!/bin/bash
keypress.sh: Detect a user keypress ("hot keyboard").

echo

old_tty_settings=$(stty −g) # Save old settings.
stty −icanon
Keypress=$(head −c1) # or $(dd bs=1 count=1 2> /dev/null)
 # on non−GNU systems

echo
echo "Key pressed was \""$Keypress"\"."
echo

stty "$old_tty_settings" # Restore old settings.

Thanks, Stephane Chazelas.

exit 0

Also see Example 9−3.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 193

terminals and modes

Normally, a terminal works in the canonical mode. When a user hits a key, the resulting character
does not immediately go to the program actually running in this terminal. A buffer local to the
terminal stores keystrokes. When the user hits the ENTER key, this sends all the stored keystrokes
to the program running. There is even a basic line editor inside the terminal.

bash$ stty −a
speed 9600 baud; rows 36; columns 96; line = 0;
 intr = ^C; quit = ^\; erase = ^H; kill = ^U; eof = ^D; eol = <undef>; eol2 = <undef>;
 start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W; lnext = ^V; flush = ^O;
 ...
 isig icanon iexten echo echoe echok −echonl −noflsh −xcase −tostop −echoprt

Using canonical mode, it is possible to redefine the special keys for the local terminal line editor.

bash$ cat > filexxx
wha<ctl−W>I<ctl−H>foo bar<ctl−U>hello world<ENTER>
<ctl−D>
bash$ cat filexxx
hello world
bash$ bash$ wc −c < file
13

The process controlling the terminal receives only 13 characters (12 alphabetic ones, plus a
newline), although the user hit 26 keys.

In non−canonical ("raw") mode, every key hit (including special editing keys such as ctl−H) sends
a character immediately to the controlling process.

The Bash prompt disables both icanon and echo, since it replaces the basic terminal line editor
with its own more elaborate one. For example, when you hit ctl−A at the Bash prompt, there's no
^A echoed by the terminal, but Bash gets a \1 character, interprets it, and moves the cursor to the
begining of the line.

Stephane Chazelas

tset

Show or initialize terminal settings. This is a less capable version of stty.

bash$ tset −r
Terminal type is xterm−xfree86.
 Kill is control−U (^U).
 Interrupt is control−C (^C).

setserial

Set or display serial port parameters. This command must be run by root user and is usually found in
a system setup script.

From /etc/pcmcia/serial script:

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 194

IRQ=`setserial /dev/$DEVICE | sed −e 's/.*IRQ: //'`
setserial /dev/$DEVICE irq 0 ; setserial /dev/$DEVICE irq $IRQ

getty, agetty

The initialization process for a terminal uses getty or agetty to set it up for login by a user. These
commands are not used within user shell scripts. Their scripting counterpart is stty.

mesg

Enables or disables write access to the current user's terminal. Disabling access would prevent
another user on the network to write to the terminal.

It can be very annoying to have a message about
ordering pizza suddenly appear in the middle of
the text file you are editing. On a multi−user
network, you might therefore wish to disable
write access to your terminal when you need to
avoid interruptions.

wall

This is an acronym for "write all", i.e., sending a message to all users at every terminal logged into
the network. It is primarily a system administrator's tool, useful, for example, when warning
everyone that the system will shortly go down due to a problem (see Example 17−2).

bash$ wall System going down for maintenance in 5 minutes!
Broadcast message from bozo (pts/1) Sun Jul 8 13:53:27 2001...

 System going down for maintenance in 5 minutes!

If write access to a particular terminal has been
disabled with mesg, then wall cannot send a
message to it.

dmesg

Lists all system bootup messages to stdout. Handy for debugging and ascertaining which device
drivers were installed and which system interrupts in use. The output of dmesg may, of course, be
parsed with grep, sed, or awk from within a script.

Information and Statistics

uname

Output system specifications (OS, kernel version, etc.) to stdout. Invoked with the −a option,
gives verbose system info (see Example 12−4). The −s option shows only the OS type.

bash$ uname −a
Linux localhost.localdomain 2.2.15−2.5.0 #1 Sat Feb 5 00:13:43 EST 2000 i686 unknown

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 195

bash$ uname −s
Linux

arch

Show system architecture. Equivalent to uname −m. See Example 10−24.

bash$ arch
i686

bash$ uname −m
i686

lastcomm

Gives information about previous commands, as stored in the /var/account/pacct file.
Command name and user name can be specified by options. This is one of the GNU accounting
utilities.

lastlog

List the last login time of all system users. This references the /var/log/lastlog file.

bash$ lastlog
root tty1 Fri Dec 7 18:43:21 −0700 2001
 bin **Never logged in**
 daemon **Never logged in**
 ...
 bozo tty1 Sat Dec 8 21:14:29 −0700 2001

bash$ lastlog | grep root
root tty1 Fri Dec 7 18:43:21 −0700 2001

This command will fail if the user invoking it does not
have read permission for the
/var/log/lastlog file.

lsof

List open files. This command outputs a detailed table of all currently open files and gives
information about their owner, size, the processes associated with them, and more. Of course,
lsof may be piped to grep and/or awk to parse and analyze its results.

bash$ lsof
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 init 1 root mem REG 3,5 30748 30303 /sbin/init
 init 1 root mem REG 3,5 73120 8069 /lib/ld−2.1.3.so
 init 1 root mem REG 3,5 931668 8075 /lib/libc−2.1.3.so
 cardmgr 213 root mem REG 3,5 36956 30357 /sbin/cardmgr
 ...

strace

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 196

Diagnostic and debugging tool for tracing system calls and signals. The simplest way of invoking it is
strace COMMAND.

bash$ strace df
execve("/bin/df", ["df"], [/* 45 vars */]) = 0
 uname({sys="Linux", node="bozo.localdomain", ...}) = 0
 brk(0) = 0x804f5e4
 ...

This is the Linux equivalent of truss.

free

Shows memory and cache usage in tabular form. The output of this command lends itself to parsing,
using grep, awk or Perl. The procinfo command shows all the information that free does, and much
more.

bash$ free
 total used free shared buffers cached
 Mem: 30504 28624 1880 15820 1608 16376
 −/+ buffers/cache: 10640 19864
 Swap: 68540 3128 65412

To show unused RAM memory:

bash$ free | grep Mem | awk '{ print $4 }'
1880

procinfo

Extract and list information and statistics from the /proc pseudo−filesystem. This gives a very
extensive and detailed listing.

bash$ procinfo | grep Bootup
Bootup: Wed Mar 21 15:15:50 2001 Load average: 0.04 0.21 0.34 3/47 6829

lsdev

List devices, that is, show installed hardware.

bash$ lsdev
Device DMA IRQ I/O Ports
 −−
 cascade 4 2
 dma 0080−008f
 dma1 0000−001f
 dma2 00c0−00df
 fpu 00f0−00ff
 ide0 14 01f0−01f7 03f6−03f6
 ...

du

Show (disk) file usage, recursively. Defaults to current working directory, unless otherwise specified.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 197

bash$ du −ach
1.0k ./wi.sh
 1.0k ./tst.sh
 1.0k ./random.file
 6.0k .
 6.0k total

df

Shows filesystem usage in tabular form.

bash$ df
Filesystem 1k−blocks Used Available Use% Mounted on
 /dev/hda5 273262 92607 166547 36% /
 /dev/hda8 222525 123951 87085 59% /home
 /dev/hda7 1408796 1075744 261488 80% /usr

stat

Gives detailed and verbose statistics on a given file (even a directory or device file) or set of files.

bash$ stat test.cru
 File: "test.cru"
 Size: 49970 Allocated Blocks: 100 Filetype: Regular File
 Mode: (0664/−rw−rw−r−−) Uid: (501/ bozo) Gid: (501/ bozo)
 Device: 3,8 Inode: 18185 Links: 1
 Access: Sat Jun 2 16:40:24 2001
 Modify: Sat Jun 2 16:40:24 2001
 Change: Sat Jun 2 16:40:24 2001

If the target file does not exist, stat returns an error message.

bash$ stat nonexistent−file
nonexistent−file: No such file or directory

vmstat

Display virtual memory statistics.

bash$ vmstat
 procs memory swap io system cpu
 r b w swpd free buff cache si so bi bo in cs us sy id
 0 0 0 0 11040 2636 38952 0 0 33 7 271 88 8 3 89

netstat

Show current network statistics and information, such as routing tables and active connections. This
utility accesses information in /proc/net (Chapter 28). See Example 28−2.

netstat −r is equivalent to route.

uptime

Shows how long the system has been running, along with associated statistics.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 198

bash$ uptime
10:28pm up 1:57, 3 users, load average: 0.17, 0.34, 0.27

hostname

Lists the system's host name. This command sets the host name in an /etc/rc.d setup script
(/etc/rc.d/rc.sysinit or similar). It is equivalent to uname −n, and a counterpart to the
$HOSTNAME internal variable.

bash$ hostname
localhost.localdomain

bash$ echo $HOSTNAME
localhost.localdomain

hostid

Echo a 32−bit hexadecimal numerical identifier for the host machine.

bash$ hostid
7f0100

This command allegedly fetches a "unique" serial number for a particular
system. Certain product registration procedures use this number to brand a
particular user license. Unfortunately, hostid only returns the machine
network address in hexadecimal, with pairs of bytes transposed.

The network address of a typical non−networked Linux machine, is found in
/etc/hosts.

bash$ cat /etc/hosts
127.0.0.1 localhost.localdomain localhost

As it happens, transposing the bytes of 127.0.0.1, we get 0.127.1.0,
which translates in hex to 007f0100, the exact equivalent of what
hostid returns, above. There exist only a few million other Linux machines
with this identical hostid.

sar

Invoking sar (system activity report) gives a very detailed rundown on system statistics. This
command is found on some commercial UNIX systems, but is not part of the base Linux distribution.
It is contained in the sysstat utilities package, written by Sebastien Godard.

bash$ sar
Linux 2.4.7−10 (localhost.localdomain) 12/31/2001

 10:30:01 AM CPU %user %nice %system %idle
 10:40:00 AM all 1.39 0.00 0.77 97.84
 10:50:00 AM all 76.83 0.00 1.45 21.72
 11:00:00 AM all 1.32 0.00 0.69 97.99
 11:10:00 AM all 1.17 0.00 0.30 98.53
 11:20:00 AM all 0.51 0.00 0.30 99.19
 06:30:00 PM all 100.00 0.00 100.01 0.00
 Average: all 1.39 0.00 0.66 97.95

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 199

http://perso.wanadoo.fr/sebastien.godard/
mailto:sebastien.godard@wanadoo.fr

System Logs

logger

Appends a user−generated message to the system log (/var/log/messages). You do not have to
be root to invoke logger.

logger Experiencing instability in network connection at 23:10, 05/21.
Now, do a 'tail /var/log/messages'.

By embedding a logger command in a script, it is possible to write debugging information to
/var/log/messages.

logger −t $0 −i Logging at line "$LINENO".
The "−t" option specifies the tag for the logger entry.
The "−i" option records the process ID.

tail /var/log/message
...
Jul 7 20:48:58 localhost ./test.sh[1712]: Logging at line 3.

logrotate

This utility manages the system log files, rotating, compressing, deleting, and/or mailing them, as
appropriate. Usually crond runs logrotate on a daily basis.

Adding an appropriate entry to /etc/logrotate.conf makes it possible to manage personal log
files, as well as system−wide ones.

Job Control

ps

Process Statistics: lists currently executing processes by owner and PID (process id). This is usually
invoked with ax options, and may be piped to grep or sed to search for a specific process (see
Example 11−8 and Example 28−1).

bash$ ps ax | grep sendmail
295 ? S 0:00 sendmail: accepting connections on port 25

pstree

Lists currently executing processes in "tree" format. The −p option shows the PIDs, as well as the
process names.

top

Continuously updated display of most cpu−intensive processes. The −b option displays in text mode,
so that the output may be parsed or accessed from a script.

bash$ top −b
 8:30pm up 3 min, 3 users, load average: 0.49, 0.32, 0.13

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 200

 45 processes: 44 sleeping, 1 running, 0 zombie, 0 stopped
 CPU states: 13.6% user, 7.3% system, 0.0% nice, 78.9% idle
 Mem: 78396K av, 65468K used, 12928K free, 0K shrd, 2352K buff
 Swap: 157208K av, 0K used, 157208K free 37244K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
 848 bozo 17 0 996 996 800 R 5.6 1.2 0:00 top
 1 root 8 0 512 512 444 S 0.0 0.6 0:04 init
 2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
 ...

nice

Run a background job with an altered priority. Priorities run from 19 (lowest) to −20 (highest). Only
root may set the negative (higher) priorities. Related commands are renice, snice, and skill.

nohup

Keeps a command running even after user logs off. The command will run as a foreground process
unless followed by &. If you use nohup within a script, consider coupling it with a wait to avoid
creating an orphan or zombie process.

pidof

Identifies process id (pid) of a running job. Since job control commands, such as kill and renice act
on the pid of a process (not its name), it is sometimes necessary to identify that pid. The
pidof command is the approximate counterpart to the $PPID internal variable.

bash$ pidof xclock
880

Example 13−4. pidof helps kill a process

#!/bin/bash
kill−process.sh

NOPROCESS=2

process=xxxyyyzzz # Use nonexistent process.
For demo purposes only...
... don't want to actually kill any actual process with this script.
#
If, for example, you wanted to use this script to logoff the Internet,
process=pppd

t=`pidof $process` # Find pid (process id) of $process.
The pid is needed by 'kill' (can't 'kill' by program name).

if [−z "$t"] # If process not present, 'pidof' returns null.
then
 echo "Process $process was not running."
 echo "Nothing killed."
 exit $NOPROCESS
fi

kill $t # May need 'kill −9' for stubborn process.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 201

Need a check here to see if process allowed itself to be killed.
Perhaps another " t=`pidof $process` ".

This entire script could be replaced by
kill $(pidof −x process_name)
but it would not be as instructive.

exit 0

fuser

Identifies the processes (by pid) that are accessing a given file, set of files, or directory. May also be
invoked with the −k option, which kills those processes. This has interesting implications for system
security, especially in scripts preventing unauthorized users from accessing system services.

crond

Administrative program scheduler, performing such duties as cleaning up and deleting system log
files and updating the slocate database. This is the superuser version of at (although each user may
have their own crontab file which can be changed with the crontab command). It runs as a
daemon and executes scheduled entries from /etc/crontab.

Process Control and Booting

init

The init command is the parent of all processes. Called in the final step of a bootup, init determines
the runlevel of the system from /etc/inittab. Invoked by its alias telinit, and by root only.

telinit

Symlinked to init, this is a means of changing the system runlevel, usually done for system
maintenance or emergency filesystem repairs. Invoked only by root. This command can be dangerous
− be certain you understand it well before using!

runlevel

Shows the current and last runlevel, that is, whether the system is halted (runlevel 0), in single−user
mode (1), in multi−user mode (2 or 3), in X Windows (5), or rebooting (6). This command accesses
the /var/run/utmp file.

halt, shutdown, reboot

Command set to shut the system down, usually just prior to a power down.

Network

ifconfig

Network interface configuration and tuning utility. It is most often used at bootup to set up the
interfaces, or to shut them down when rebooting.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 202

Code snippets from /etc/rc.d/init.d/network

...

Check that networking is up.
[${NETWORKING} = "no"] && exit 0

[−x /sbin/ifconfig] || exit 0

...

for i in $interfaces ; do
 if ifconfig $i 2>/dev/null | grep −q "UP" >/dev/null 2>&1 ; then
 action "Shutting down interface $i: " ./ifdown $i boot
 fi
The GNU−specific "−q" option to to "grep" means "quiet", i.e., producing no output.
Redirecting output to /dev/null is therefore not strictly necessary.

...

echo "Currently active devices:"
echo `/sbin/ifconfig | grep ^[a−z] | awk '{print $1}'`
^^^^^ should be quoted to prevent globbing.
The following also work.
echo $(/sbin/ifconfig | awk '/^[a−z]/ { print $1 })'
echo $(/sbin/ifconfig | sed −e 's/ .*//')
Thanks, S.C., for additional comments.

See also Example 30−5.
route

Show info about or make changes to the kernel routing table.

bash$ route
Destination Gateway Genmask Flags MSS Window irtt Iface
 pm3−67.bozosisp * 255.255.255.255 UH 40 0 0 ppp0
 127.0.0.0 * 255.0.0.0 U 40 0 0 lo
 default pm3−67.bozosisp 0.0.0.0 UG 40 0 0 ppp0

chkconfig

Check network configuration. This command lists and manages the network services started at
bootup in the /etc/rc?.d directory.

Originally a port from IRIX to Red Hat Linux, chkconfig may not be part of the core installation of
some Linux flavors.

bash$ chkconfig −−list
atd 0:off 1:off 2:off 3:on 4:on 5:on 6:off
 rwhod 0:off 1:off 2:off 3:off 4:off 5:off 6:off
 ...

tcpdump

Network packet "sniffer". This is a tool for analyzing and troubleshooting traffic on a network by
dumping packet headers that match specified criteria.

Dump ip packet traffic between hosts bozoville and caduceus:

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 203

bash$ tcpdump ip host bozoville and caduceus

Of course, the output of tcpdump can be parsed, using certain of the previously discussed text
processing utilities.

Filesystem

mount

Mount a filesystem, usually on an external device, such as a floppy or CDROM. The file
/etc/fstab provides a handy listing of available filesystems, partitions, and devices, including
options, that may be automatically or manually mounted. The file /etc/mtab shows the currently
mounted filesystems and partitions (including the virtual ones, such as /proc).

mount −a mounts all filesystems and partitions listed in /etc/fstab, except those with a
noauto option. At bootup, a startup script in /etc/rc.d (rc.sysinit or something similar)
invokes this to get everything mounted.

mount −t iso9660 /dev/cdrom /mnt/cdrom
Mounts CDROM
mount /mnt/cdrom
Shortcut, if /mnt/cdrom listed in /etc/fstab

This versatile command can even mount an ordinary file on a block device, and the file will act as if
it were a filesystem. Mount accomplishes that by associating the file with a loopback device. One
application of this is to mount and examine an ISO9660 image before burning it onto a CDR. [39]

Example 13−5. Checking a CD image

As root...

mkdir /mnt/cdtest # Prepare a mount point, if not already there.

mount −r −t iso9660 −o loop cd−image.iso /mnt/cdtest # Mount the image.
"−o loop" option equivalent to "losetup /dev/loop0"
cd /mnt/cdtest # Now, check the image.
ls −alR # List the files in the directory tree there.
 # And so forth.

umount

Unmount a currently mounted filesystem. Before physically removing a previously mounted floppy
or CDROM disk, the device must be umounted, else filesystem corruption may result.

umount /mnt/cdrom
You may now press the eject button and safely remove the disk.

The automount utility, if properly installed, can
mount and unmount floppies or CDROM disks as
they are accessed or removed. On laptops with
swappable floppy and CDROM drives, this can

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 204

cause problems, though.
sync

Forces an immediate write of all updated data from buffers to hard drive (synchronize drive with
buffers). While not strictly necessary, a sync assures the sys admin or user that the data just changed
will survive a sudden power failure. In the olden days, a sync; sync (twice, just to make
absolutely sure) was a useful precautionary measure before a system reboot.

At times, you may wish to force an immediate buffer flush, as when securely deleting a file (see
Example 12−34) or when the lights begin to flicker.

losetup

Sets up and configures loopback devices.

Example 13−6. Creating a filesystem in a file

SIZE=1000000 # 1 meg

head −c $SIZE < /dev/zero > file # Set up file of designated size.
losetup /dev/loop0 file # Set it up as loopback device.
mke2fs /dev/loop0 # Create filesystem.
mount −o loop /dev/loop0 /mnt # Mount it.

Thanks, S.C.

mkswap

Creates a swap partition or file. The swap area must subsequently be enabled with swapon.

swapon, swapoff

Enable / disable swap partitition or file. These commands usually take effect at bootup and shutdown.

mke2fs

Create a Linux ext2 filesystem. This command must be invoked as root.

Example 13−7. Adding a new hard drive

#!/bin/bash

Adding a second hard drive to system.
Software configuration. Assumes hardware already mounted.
From an article by the author of this document.
in issue #38 of "Linux Gazette", http://www.linuxgazette.com.

ROOT_UID=0 # This script must be run as root.
E_NOTROOT=67 # Non−root exit error.

if ["$UID" −ne "$ROOT_UID"]
then
 echo "Must be root to run this script."

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 205

 exit $E_NOTROOT
fi

Use with extreme caution!
If something goes wrong, you may wipe out your current filesystem.

NEWDISK=/dev/hdb # Assumes /dev/hdb vacant. Check!
MOUNTPOINT=/mnt/newdisk # Or choose another mount point.

fdisk $NEWDISK
mke2fs −cv $NEWDISK1 # Check for bad blocks & verbose output.
Note: /dev/hdb1, *not* /dev/hdb!
mkdir $MOUNTPOINT
chmod 777 $MOUNTPOINT # Makes new drive accessible to all users.

Now, test...
mount −t ext2 /dev/hdb1 /mnt/newdisk
Try creating a directory.
If it works, umount it, and proceed.

Final step:
Add the following line to /etc/fstab.
/dev/hdb1 /mnt/newdisk ext2 defaults 1 1

exit 0

See also Example 13−6 and Example 29−3.

tune2fs

Tune ext2 filesystem. May be used to change filesystem parameters, such as maximum mount count.
This must be invoked as root.

This is an extremely dangerous command. Use it
at your own risk, as you may inadvertently
destroy your filesystem.

dumpe2fs

Dump (list to stdout) very verbose filesystem info. This must be invoked as root.

root# dumpe2fs /dev/hda7 | grep 'ount count'
dumpe2fs 1.19, 13−Jul−2000 for EXT2 FS 0.5b, 95/08/09
 Mount count: 6
 Maximum mount count: 20

hdparm

List or change hard disk parameters. This command must be invoked as root, and it may be
dangerous if misused.

fdisk

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 206

Create or change a partition table on a storage device, usually a hard drive. This command must be
invoked as root.

Use this command with extreme caution. If
something goes wrong, you may destroy an
existing filesystem.

fsck, e2fsck, debugfs

Filesystem check, repair, and debug command set.

fsck: a front end for checking a UNIX filesystem (may invoke other utilities). The actual filesystem
type generally defaults to ext2.

e2fsck: ext2 filesystem checker.

debugfs: ext2 filesystem debugger.

All of these should be invoked as root, and they
can damage or destroy a filesystem if misused.

badblocks

Checks for bad blocks (physical media flaws) on a storage device. This command finds use when
formatting a newly installed hard drive or testing the integrity of backup media. [40] As an example,
badblocks /dev/fd0 tests a floppy disk.

The badblocks command may be invoked destructively (overwrite all data) or in non−destructive
read−only mode. If root user owns the device to be tested, as is generally the case, then root must
invoke this command.

mkbootdisk

Creates a boot floppy which can be used to bring up the system if, for example, the MBR (master
boot record) becomes corrupted. The mkbootdisk command is actually a Bash script, written by Erik
Troan, in the /sbin directory.

chroot

CHange ROOT directory. Normally commands are fetched from $PATH, relative to /, the default
root directory. This changes the root directory to a different one (and also changes the working
directory to there). This is useful for security purposes, for instance when the system administrator
wishes to restrict certain users, such as those telnetting in, to a secured portion of the filesystem (this
is sometimes referred to as confining a guest user to a "chroot jail"). Note that after a chroot, the
execution path for system binaries is no longer valid.

A chroot /opt would cause references to /usr/bin to be translated to /opt/usr/bin.
Likewise, chroot /aaa/bbb /bin/ls would redirect future instances of ls to /aaa/bbb as
the base directory, rather than / as is normally the case. An alias XX 'chroot /aaa/bbb ls' in a user's
~/.bashrc effectively restricts which portion of the filesystem she may run command "XX" on.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 207

The chroot command is also handy when running from an emergency boot floppy (chroot to
/dev/fd0), or as an option to lilo when recovering from a system crash. Other uses include
installation from a different filesystem (an rpm option) or running a readonly filesystem from a CD
ROM. Invoke only as root, and use with care.

It might be necessary to copy certain system files to
a chrooted directory, since the normal $PATH can
no longer be relied upon.

lockfile

This utility is part of the procmail package (www.procmail.org). It creates a lock file, a semaphore
file that controls access to a file, device, or resource. The lock file serves as a flag that this particular
file, device, or resource is in use by a particular process ("busy"), and this permits only restricted
access (or no access) to other processes.

Lock files are used in such applications as protecting system mail folders from simultaneously being
changed by multiple users, indicating that a modem port is being accessed, and showing that an
instance of Netscape is using its cache. Scripts may check for the existence of a lock file created by a
certain process to check if that process is running. Note that if a script attempts create a lock file that
already exists, the script will likely hang.

Normally, applications create and check for lock files in the /var/lock directory. A script can test
for the presence of a lock file by something like the following.

appname=xyzip
Application "xyzip" created lock file "/var/lock/xyzip.lock".

if [−e "/var/lock/$appname.lock]
then
 ...

mknod

Creates block or character device files (may be necessary when installing new hardware on the
system).

tmpwatch

Automatically deletes files which have not been accessed within a specified period of time. Usually
invoked by crond to remove stale log files.

MAKEDEV

Utility for creating device files. It must be run as root, and in the /dev directory.

root# ./MAKEDEV

This is a sort of advanced version of mknod.

Backup

dump, restore

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 208

http://www.procmail.org

The dump command is an elaborate filesystem backup utility, generally used on larger installations
and networks. [41] It reads raw disk partitions and writes a backup file in a binary format. Files to be
backed up may be saved to a variety of storage media, including disks and tape drives. The
restore command restores backups made with dump.

fdformat

Perform a low−level format on a floppy disk.

System Resources

ulimit

Sets an upper limit on system resources. Usually invoked with the −f option, which sets a limit on
file size (ulimit −f 1000 limits files to 1 meg maximum). The −t option limits the coredump size
(ulimit −c 0 eliminates coredumps). Normally, the value of ulimit would be set in
/etc/profile and/or ~/.bash_profile (see Chapter 27).

umask

User file creation MASK. Limit the default file attributes for a particular user. All files created by
that user take on the attributes specified by umask. The (octal) value passed to umask defines the the
file permissions disabled. For example, umask 022 ensures that new files will have at most 755
permissions (777 NAND 022). [42] Of course, the user may later change the attributes of particular
files with chmod.The usual practice is to set the value of umask in /etc/profile and/or
~/.bash_profile (see Chapter 27).

rdev

Get info about or make changes to root device, swap space, or video mode. The functionality of
rdev has generally been taken over by lilo, but rdev remains useful for setting up a ram disk. This is
another dangerous command, if misused.

Modules

lsmod

List installed kernel modules.

bash$ lsmod
Module Size Used by
 autofs 9456 2 (autoclean)
 opl3 11376 0
 serial_cs 5456 0 (unused)
 sb 34752 0
 uart401 6384 0 [sb]
 sound 58368 0 [opl3 sb uart401]
 soundlow 464 0 [sound]
 soundcore 2800 6 [sb sound]
 ds 6448 2 [serial_cs]
 i82365 22928 2
 pcmcia_core 45984 0 [serial_cs ds i82365]

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 209

insmod

Force insertion of a kernel module. Must be invoked as root.

modprobe

Module loader that is normally invoked automatically in a startup script.

depmod

Creates module dependency file, usually invoked from startup script.

Miscellaneous

env

Runs a program or script with certain environmental variables set or changed (without changing the
overall system environment). The [varname=xxx] permits changing the environmental variable
varname for the duration of the script. With no options specified, this command lists all the
environmental variable settings.

In Bash and other Bourne shell derivatives, it is possible to set variables in a
single command's environment.

var1=value1 var2=value2 commandXXX
$var1 and $var2 set in the environment of 'commandXXX' only.

The first line of a script (the "sha−bang" line) may use env when the path to
the shell or interpreter is unknown.

#! /usr/bin/env perl

print "This Perl script will run,\n";
print "even when I don't know where to find Perl.\n";

Good for portable cross−platform scripts,
where the Perl binaries may not be in the expected place.
Thanks, S.C.

ldd

Show shared lib dependencies for an executable file.

bash$ ldd /bin/ls
libc.so.6 => /lib/libc.so.6 (0x4000c000)
/lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x80000000)

strip

Remove the debugging symbolic references from an executable binary. This decreases its size, but
makes debugging of it impossible.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 210

This command often occurs in a Makefile, but rarely in a shell script.

nm

List symbols in an unstripped compiled binary.

rdist

Remote distribution client: synchronizes, clones, or backs up a file system on a remote server.

Using our knowledge of administrative commands, let us examine a system script. One of the shortest and
simplest to understand scripts is killall, used to suspend running processes at system shutdown.

Example 13−8. killall, from /etc/rc.d/init.d

#!/bin/sh

−−> Comments added by the author of this document marked by "# −−>".

−−> This is part of the 'rc' script package
−−> by Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>

−−> This particular script seems to be Red Hat specific
−−> (may not be present in other distributions).

Bring down all unneeded services that are still running (there shouldn't
be any, so this is just a sanity check)

for i in /var/lock/subsys/*; do
 # −−> Standard for/in loop, but since "do" is on same line,
 # −−> it is necessary to add ";".
 # Check if the script is there.
 [! −f $i] && continue
 # −−> This is a clever use of an "and list", equivalent to:
 # −−> if [! −f "$i"]; then continue

 # Get the subsystem name.
 subsys=${i#/var/lock/subsys/}
 # −−> Match variable name, which, in this case, is the file name.
 # −−> This is the exact equivalent of subsys=`basename $i`.

 # −−> It gets it from the lock file name, and since if there
 # −−> is a lock file, that's proof the process has been running.
 # −−> See the "lockfile" entry, above.

 # Bring the subsystem down.
 if [−f /etc/rc.d/init.d/$subsys.init]; then
 /etc/rc.d/init.d/$subsys.init stop
 else
 /etc/rc.d/init.d/$subsys stop
 # −−> Suspend running jobs and daemons
 # −−> using the 'stop' shell builtin.
 fi
done

That wasn't so bad. Aside from a little fancy footwork with variable matching, there is no new material there.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 211

Exercise 1. In /etc/rc.d/init.d, analyze the halt script. It is a bit longer than killall, but similar in
concept. Make a copy of this script somewhere in your home directory and experiment with it (do not run it
as root). Do a simulated run with the −vn flags (sh −vn scriptname). Add extensive comments.
Change the "action" commands to "echos".

Exercise 2. Look at some of the more complex scripts in /etc/rc.d/init.d. See if you can understand
parts of them. Follow the above procedure to analyze them. For some additional insight, you might also
examine the file sysvinitfiles in /usr/share/doc/initscripts−?.??, which is part of the
"initscripts" documentation.

Advanced Bash−Scripting Guide

Chapter 13. System and Administrative Commands 212

Chapter 14. Command Substitution
Command substitution reassigns the output of a command [43] or even multiple commands; it literally plugs
the command output into another context.

The classic form of command substitution uses backquotes (`...`). Commands within backquotes (backticks)
generate command line text.

script_name=`basename $0`
echo "The name of this script is $script_name."

The output of commands can be used as arguments to another command, to set a variable, and even
for generating the argument list in a for loop.

rm `cat filename` # "filename" contains a list of files to delete.
#
S. C. points out that "arg list too long" error might result.
Better is xargs rm −− < filename
(−− covers those cases where "filename" begins with a "−")

textfile_listing=`ls *.txt`
Variable contains names of all *.txt files in current working directory.
echo $textfile_listing

textfile_listing2=$(ls *.txt) # The alternative form of command substitution.
echo $textfile_listing
Same result.

A possible problem with putting a list of files into a single string
is that a newline may creep in.
#
A safer way to assign a list of files to a parameter is with an array.
shopt −s nullglob # If no match, filename expands to nothing.
textfile_listing=(*.txt)
#
Thanks, S.C.

Command substitution may result in word splitting.

COMMAND `echo a b` # 2 args: a and b

COMMAND "`echo a b`" # 1 arg: "a b"

COMMAND `echo` # no arg

COMMAND "`echo`" # one empty arg

Thanks, S.C.

Word splitting resulting from command substitution may remove trailing newlines characters from
the output of the reassigned command(s). This can cause unpleasant surprises.

Chapter 14. Command Substitution 213

dir_listing=`ls −l`
echo $dirlisting

Expecting a nicely ordered directory listing, such as:
−rw−rw−r−− 1 bozo 30 May 13 17:15 1.txt
−rw−rw−r−− 1 bozo 51 May 15 20:57 t2.sh
−rwxr−xr−x 1 bozo 217 Mar 5 21:13 wi.sh

However, what you get is:
total 3 −rw−rw−r−− 1 bozo bozo 30 May 13 17:15 1.txt −rw−rw−r−− 1 bozo
bozo 51 May 15 20:57 t2.sh −rwxr−xr−x 1 bozo bozo 217 Mar 5 21:13 wi.sh

The newlines disappeared.

Even when there is no word splitting, command substitution can remove trailing newlines.

cd "`pwd`" # This should always work.
However...

mkdir 'dir with trailing newline
'

cd 'dir with trailing newline
'

cd "`pwd`" # Error message:
bash: cd: /tmp/file with trailing newline: No such file or directory

cd "$PWD" # Works fine.

old_tty_setting=$(stty −g) # Save old terminal setting.
echo "Hit a key "
stty −icanon −echo # Disable "canonical" mode for terminal.
 # Also, disable *local* echo.
key=$(dd bs=1 count=1 2> /dev/null) # Using 'dd' to get a keypress.
stty "$old_tty_setting" # Restore old setting.
echo "You hit ${#key} key." # ${#variable} = number of characters in $variable
#
Hit any key except RETURN, and the output is "You hit 1 key."
Hit RETURN, and it's "You hit 0 key."
The newline gets eaten in the command substitution.

Thanks, S.C.

Command substitution even permits setting a variable to the contents of a file, using either
redirection or the cat command.

variable1=`<file1` # Set "variable1" to contents of "file1".
variable2=`cat file2` # Set "variable2" to contents of "file2".

Be aware that the variables may contain embedded whitespace,
#+ or even (horrors), control characters.

Advanced Bash−Scripting Guide

Chapter 14. Command Substitution 214

Command substitution makes it possible to
extend the toolset available to Bash. It is simply
a matter of writing a program or script that
outputs to stdout (like a well−behaved UNIX
tool should) and assigning that output to a
variable.

#include <stdio.h>

/* "Hello, world." C program */

int main()
{
 printf("Hello, world.");
 return (0);
}

bash$ gcc −o hello hello.c

#!/bin/bash
hello.sh

greeting=`./hello`
echo $greeting

bash$ sh hello.sh
Hello, world.

The $(COMMAND) form has superseded backticks for command
substitution.

output=$(sed −n /"$1"/p $file)
From "grp.sh" example.

Examples of command substitution in shell scripts:

Example 10−71.
Example 10−242.
Example 9−223.
Example 12−24.
Example 12−155.
Example 12−126.
Example 12−327.
Example 10−128.
Example 10−99.
Example 12−2410.
Example 16−511.
Example A−1212.
Example 28−113.
Example 12−2814.
Example 12−2915.

Advanced Bash−Scripting Guide

Chapter 14. Command Substitution 215

Example 12−3016.

Advanced Bash−Scripting Guide

Chapter 14. Command Substitution 216

Chapter 15. Arithmetic Expansion
Arithmetic expansion provides a powerful tool for performing arithmetic operations in scripts. Translating a
string into a numerical expression is relatively straightforward using backticks, double parentheses, or let.

Variations

Arithmetic expansion with backticks (often used in conjunction with expr)

z=`expr $z + 3` # 'expr' does the expansion.

Arithmetic expansion with double parentheses, and using let

The use of backticks in arithmetic expansion has been superseded by double parentheses
$((...)) or the very convenient let construction.

z=$(($z+3))
$((EXPRESSION)) is arithmetic expansion. # Not to be confused with
 # command substitution.

let z=z+3
let "z += 3" #If quotes, then spaces and special operators allowed.
'let' is actually arithmetic evaluation, rather than expansion.

All the above are equivalent. You may use whichever one "rings your chimes".

Examples of arithmetic expansion in scripts:

Example 12−61.
Example 10−132.
Example 26−13.
Example 26−44.
Example A−125.

Chapter 15. Arithmetic Expansion 217

Chapter 16. I/O Redirection

There are always three default "files" open, stdin (the keyboard), stdout (the screen), and
stderr (error messages output to the screen). These, and any other open files, can be redirected.
Redirection simply means capturing output from a file, command, program, script, or even code block within
a script (see Example 4−1 and Example 4−2) and sending it as input to another file, command, program, or
script.

Each open file gets assigned a file descriptor. [44] The file descriptors for stdin, stdout, and
stderr are 0, 1, and 2, respectively. For opening additional files, there remain descriptors 3 to 9. It is
sometimes useful to assign one of these additional file descriptors to stdin, stdout, or stderr as a
temporary duplicate link. [45] This simplifies restoration to normal after complex redirection and reshuffling
(see Example 16−1).

 >
 # Redirect stdout to a file.
 # Creates the file if not present, otherwise overwrites it.

 ls −lR > dir−tree.list
 # Creates a file containing a listing of the directory tree.

 : > filename
 # The > truncates file "filename" to zero length.
 # If file not present, creates zero−length file (same effect as 'touch').
 # The : serves as a dummy placeholder, producing no output.

 >>
 # Redirect stdout to a file.
 # Creates the file if not present, otherwise appends to it.

 # Single−line redirection commands (affect only the line they are on):
 # −−
 1>filename
 # Redirect stdout to file "filename".
 1>>filename
 # Redirect and append stdout to file "filename".
 2>filename
 # Redirect stderr to file "filename".
 2>>filename
 # Redirect and append stderr to file "filename".

 #==
 # Redirecting stdout, one line at a time.
 LOGFILE=script.log

 echo "This statement is sent to the log file, \"$LOGFILE\"." 1>$LOGFILE
 echo "This statement is appended to \"$LOGFILE\"." 1>>$LOGFILE
 echo "This statement is also appended to \"$LOGFILE\"." 1>>$LOGFILE
 echo "This statement is echoed to stdout, and will not appear in \"$LOGFILE\"."
 # These redirection commands automatically "reset" after each line.

 # Redirecting stderr, one line at a time.

Chapter 16. I/O Redirection 218

 ERRORFILE=script.errors

 bad_command1 2>$ERRORFILE # Error message sent to $ERRORFILE.
 bad_command2 2>>$ERRORFILE # Error message appended to $ERRORFILE.
 bad_command3 # Error message echoed to stderr,
 #+ and does not appear in $ERRORFILE.
 # These redirection commands also automatically "reset" after each line.
 #==

 2>&1
 # Redirects stderr to stdout.
 # Error messages get sent to same place as standard output.

 i>&j
 # Redirects file descriptor i to j.
 # All output of file pointed to by i gets sent to file pointed to by j.

 >&j
 # Redirects, by default, file descriptor 1 (stdout) to j.
 # All stdout gets sent to file pointed to by j.

 0<
 <
 # Accept input from a file.
 # Companion command to ">", and often used in combination with it.
 #
 # grep search−word <filename

 [j]<>filename
 # Open file "filename" for reading and writing, and assign file descriptor "j" to it.
 # If "filename" does not exist, create it.
 # If file descriptor "j" is not specified, default to fd 0, stdin.
 #
 # An application of this is writing at a specified place in a file.
 echo 1234567890 > File # Write string to "File".
 exec 3<> File # Open "File" and assign fd 3 to it.
 read −n 4 <&3 # Read only 4 characters.
 echo −n . >&3 # Write a decimal point there.
 exec 3>&− # Close fd 3.
 cat File # ==> 1234.67890
 # Random access, by golly.

 |
 # Pipe.
 # General purpose process and command chaining tool.
 # Similar to ">", but more general in effect.
 # Useful for chaining commands, scripts, files, and programs together.
 cat *.txt | sort | uniq > result−file
 # Sorts the output of all the .txt files and deletes duplicate lines,
 # finally saves results to "result−file".

Multiple instances of input and output redirection and/or pipes can be combined in a single command line.

command < input−file > output−file

command1 | command2 | command3 > output−file

Advanced Bash−Scripting Guide

Chapter 16. I/O Redirection 219

See Example 12−23 and Example A−10.

Multiple output streams may be redirected to one file.

ls −yz >> command.log 2>&1
Capture result of illegal options "yz" to "ls" in file "command.log".
Because stderr redirected to the file, any error messages will also be there.

Closing File Descriptors

n<&−

Close input file descriptor n.

0<&−, <&−

Close stdin.

n>&−

Close output file descriptor n.

1>&−, >&−

Close stdout.

Child processes inherit open file descriptors. This is why pipes work. To prevent an fd from being inherited,
close it.

Redirecting only stderr to a pipe.

exec 3>&1 # Save current "value" of stdout.
ls −l 2>&1 >&3 3>&− | grep bad 3>&− # Close fd 3 for 'ls' and 'grep'.
exec 3>&− # Now close it for the remainder of the script.

Thanks, S.C.

For a more detailed introduction to I/O redirection see Appendix D.

16.1. Using exec

The exec <filename command redirects stdin to a file. From that point on, all stdin comes from that file,
rather than its normal source (usually keyboard input). This provides a method of reading a file line by line
and possibly parsing each line of input using sed and/or awk.

Example 16−1. Redirecting stdin using exec

#!/bin/bash
Redirecting stdin using 'exec'.

Advanced Bash−Scripting Guide

16.1. Using exec 220

exec 6<&0 # Link file descriptor #6 with stdin.

exec < data−file # stdin replaced by file "data−file"

read a1 # Reads first line of file "data−file".
read a2 # Reads second line of file "data−file."

echo
echo "Following lines read from file."
echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"
echo $a1
echo $a2

echo; echo; echo

exec 0<&6 6<&−
Now restore stdin from fd #6, where it had been saved,
and close fd #6 (6<&−) to free it for other processes to use.
<&6 6<&− also works.

echo −n "Enter data "
read b1 # Now "read" functions as expected, reading from normal stdin.
echo "Input read from stdin."
echo "−−−−−−−−−−−−−−−−−−−−−−"
echo "b1 = $b1"

echo

exit 0

16.2. Redirecting Code Blocks

Blocks of code, such as while, until, and for loops, even if/then test blocks can also incorporate redirection of
stdin . Even a function may use this form of redirection (see Example 23−7). The < operator at the the end
of the code block accomplishes this.

Example 16−2. Redirected while loop

#!/bin/bash

if [−z "$1"]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename=$1
fi
Filename=${1:−names.data}
can replace the above test (parameter substitution).

count=0

echo

while ["$name" != Smith] # Why is variable $name in quotes?
do
 read name # Reads from $Filename, rather than stdin.

Advanced Bash−Scripting Guide

16.2. Redirecting Code Blocks 221

 echo $name
 let "count += 1"
done <"$Filename" # Redirects stdin to file $Filename.
^^^^^^^^^^^^

echo; echo "$count names read"; echo

Note that in some older shell scripting languages,
the redirected loop would run as a subshell.
Therefore, $count would return 0, the initialized value outside the loop.
Bash and ksh avoid starting a subshell whenever possible,
so that this script, for example, runs correctly.
Thanks to Heiner Steven for pointing this out.

exit 0

Example 16−3. Alternate form of redirected while loop

#!/bin/bash

This is an alternate form of the preceding script.

Suggested by Heiner Steven
as a workaround in those situations when a redirect loop
runs as a subshell, and therefore variables inside the loop
do not keep their values upon loop termination.

if [−z "$1"]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename=$1
fi

exec 3<&0 # Save stdin to file descriptor 3.
exec 0<"$Filename" # Redirect standard input.

count=0
echo

while ["$name" != Smith]
do
 read name # Reads from redirected stdin ($Filename).
 echo $name
 let "count += 1"
done <"$Filename" # Loop reads from file $Filename.
^^^^^^^^^^^^

exec 0<&3 # Restore old stdin.
exec 3<&− # Close temporary fd 3.

echo; echo "$count names read"; echo

exit 0

Example 16−4. Redirected until loop

Advanced Bash−Scripting Guide

16.2. Redirecting Code Blocks 222

#!/bin/bash
Same as previous example, but with "until" loop.

if [−z "$1"]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename=$1
fi

while ["$name" != Smith]
until ["$name" = Smith] # Change != to =.
do
 read name # Reads from $Filename, rather than stdin.
 echo $name
done <"$Filename" # Redirects stdin to file $Filename.
^^^^^^^^^^^^

Same results as with "while" loop in previous example.

exit 0

Example 16−5. Redirected for loop

#!/bin/bash

if [−z "$1"]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename=$1
fi

line_count=`wc $Filename | awk '{ print $1 }'` # Number of lines in target file.
Very contrived and kludgy, nevertheless shows that
it's possible to redirect stdin within a "for" loop...
if you're clever enough.
#
More concise is line_count=$(wc < "$Filename")

for name in `seq $line_count` # Recall that "seq" prints sequence of numbers.
while ["$name" != Smith] −− more complicated than a "while" loop −−
do
 read name # Reads from $Filename, rather than stdin.
 echo $name
 if ["$name" = Smith] # Need all this extra baggage here.
 then
 break
 fi
done <"$Filename" # Redirects stdin to file $Filename.
^^^^^^^^^^^^

exit 0

We can modify the previous example to also redirect the output of the loop.

Example 16−6. Redirected for loop (both stdin and stdout redirected)

Advanced Bash−Scripting Guide

16.2. Redirecting Code Blocks 223

#!/bin/bash

if [−z "$1"]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename=$1
fi

Savefile=$Filename.new # Filename to save results in.
FinalName=Jonah # Name to terminate "read" on.

line_count=`wc $Filename | awk '{ print $1 }'` # Number of lines in target file.

for name in `seq $line_count`
do
 read name
 echo "$name"
 if ["$name" = "$FinalName"]
 then
 break
 fi
done < "$Filename" > "$Savefile" # Redirects stdin to file $Filename,
^^^^^^^^^^^^^^^^^^^^^^^^^^^ and saves it to backup file.

exit 0

Example 16−7. Redirected if/then test

#!/bin/bash

if [−z "$1"]
then
 Filename=names.data # Default, if no filename specified.
else
 Filename=$1
fi

TRUE=1

if ["$TRUE"] # if true and if : also work.
then
 read name
 echo $name
fi <"$Filename"
^^^^^^^^^^^^

Reads only first line of file.
An "if/then" test has no way of iterating unless embedded in a loop.

exit 0

Redirecting the stdout of a code block has the effect of saving its output to a file. See Example 4−2.

Here documents are a special case of redirected code
blocks.

Advanced Bash−Scripting Guide

16.2. Redirecting Code Blocks 224

16.3. Applications

Clever use of I/O redirection permits parsing and stitching together snippets of command output (see
Example 11−4). This permits generating report and log files.

Example 16−8. Logging events

#!/bin/bash
logevents.sh, by Stephane Chazelas.

Event logging to a file.
Must be run as root (for write access in /var/log).

ROOT_UID=0 # Only users with $UID 0 have root privileges.
E_NOTROOT=67 # Non−root exit error.

if ["$UID" −ne "$ROOT_UID"]
then
 echo "Must be root to run this script."
 exit $E_NOTROOT
fi

FD_DEBUG1=3
FD_DEBUG2=4
FD_DEBUG3=5

Uncomment one of the two lines below to activate script.
LOG_EVENTS=1
LOG_VARS=1

log() # Writes time and date to log file.
{
echo "$(date) $*" >&7 # This *appends* the date to the file.
 # See below.
}

case $LOG_LEVEL in
 1) exec 3>&2 4> /dev/null 5> /dev/null;;
 2) exec 3>&2 4>&2 5> /dev/null;;
 3) exec 3>&2 4>&2 5>&2;;
 *) exec 3> /dev/null 4> /dev/null 5> /dev/null;;
esac

FD_LOGVARS=6
if [[$LOG_VARS]]
then exec 6>> /var/log/vars.log
else exec 6> /dev/null # Bury output.
fi

FD_LOGEVENTS=7
if [[$LOG_EVENTS]]
then
 # then exec 7 >(exec gawk '{print strftime(), $0}' >> /var/log/event.log)

Advanced Bash−Scripting Guide

16.3. Applications 225

 # Above line will not work in Bash, version 2.04.
 exec 7>> /var/log/event.log # Append to "event.log".
 log # Write time and date.
else exec 7> /dev/null # Bury output.
fi

echo "DEBUG3: beginning" >&${FD_DEBUG3}

ls −l >&5 2>&4 # command1 >&5 2>&4

echo "Done" # command2

echo "sending mail" >&${FD_LOGEVENTS} # Writes "sending mail" to fd #7.

exit 0

Advanced Bash−Scripting Guide

16.3. Applications 226

Chapter 17. Here Documents

A here document uses a special form of I/O redirection to feed a command script to an interactive program,
such as ftp, telnet, or ex. Typically, the script consists of a command list to the program, delineated by a limit
string. The special symbol << precedes the limit string. This has the effect of redirecting the output of a file
into the program, similar to interactive−program < command−file, where
command−file contains

command #1
command #2
...

The "here document" alternative looks like this:

#!/bin/bash
interactive−program <<LimitString
command #1
command #2
...
LimitString

Choose a limit string sufficiently unusual that it will not occur anywhere in the command list and confuse
matters.

Note that here documents may sometimes be used to good effect with non−interactive utilities and commands.

Example 17−1. dummyfile: Creates a 2−line dummy file

#!/bin/bash

Non−interactive use of 'vi' to edit a file.
(Will not work with 'vim', for some reason.)
Emulates 'sed'.

E_BADARGS=65

if [−z "$1"]
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

TARGETFILE=$1

Insert 2 lines in file, then save.
#−−−−−−−−Begin here document−−−−−−−−−−−#
vi $TARGETFILE <<x23LimitStringx23
i
This is line 1 of the example file.
This is line 2 of the example file.
^[
ZZ
x23LimitStringx23
#−−−−−−−−−−End here document−−−−−−−−−−−#

Chapter 17. Here Documents 227

Note that ^[above is a literal escape
typed by Control−V Escape.

exit 0

The above script could just as effectively have been implemented with ex, rather than vi. Here documents
containing a list of ex commands are common enough to form their own category, known as ex scripts.

Example 17−2. broadcast: Sends message to everyone logged in

#!/bin/bash

wall <<zzz23EndOfMessagezzz23
E−mail your noontime orders for pizza to the system administrator.
 (Add an extra dollar for anchovy or mushroom topping.)
Additional message text goes here.
Note: Comment lines printed by 'wall'.
zzz23EndOfMessagezzz23

Could have been done more efficiently by
wall <message−file
However, saving a message template in a script saves work.

exit 0

Example 17−3. Multi−line message using cat

#!/bin/bash

'echo' is fine for printing single line messages,
but somewhat problematic for for message blocks.
A 'cat' here document overcomes this limitation.

cat <<End−of−message
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
This is line 1 of the message.
This is line 2 of the message.
This is line 3 of the message.
This is line 4 of the message.
This is the last line of the message.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
End−of−message

exit 0

#−−
Code below disabled, due to "exit 0" above.

S.C. points out that the following also works.
echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
This is line 1 of the message.
This is line 2 of the message.
This is line 3 of the message.
This is line 4 of the message.
This is the last line of the message.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"

Advanced Bash−Scripting Guide

Chapter 17. Here Documents 228

However, text may not include double quotes unless they are escaped.

The − option to mark a here document limit string (<<−LimitString) suppresses tabs (but not spaces) in
the output. This may be useful in making a script more readable.

Example 17−4. Multi−line message, with tabs suppressed

#!/bin/bash
Same as previous example, but...

The − option to a here document <<−
suppresses tabs in the body of the document, but *not* spaces.

cat <<−ENDOFMESSAGE
 This is line 1 of the message.
 This is line 2 of the message.
 This is line 3 of the message.
 This is line 4 of the message.
 This is the last line of the message.
ENDOFMESSAGE
The output of the script will be flush left.
Leading tab in each line will not show.

Above 5 lines of "message" prefaced by a tab, not spaces.
Spaces not affected by <<− .

exit 0

A here document supports parameter and command substitution. It is therefore possible to pass different
parameters to the body of the here document, changing its output accordingly.

Example 17−5. Here document with parameter substitution

#!/bin/bash
Another 'cat' here document, using parameter substitution.

Try it with no command line parameters, ./scriptname
Try it with one command line parameter, ./scriptname Mortimer
Try it with one two−word quoted command line parameter,
./scriptname "Mortimer Jones"

CMDLINEPARAM=1 # Expect at least command line parameter.

if [$# −ge $CMDLINEPARAM]
then
 NAME=$1 # If more than one command line param,
 # then just take the first.
else
 NAME="John Doe" # Default, if no command line parameter.
fi

RESPONDENT="the author of this fine script"

cat <<Endofmessage

Advanced Bash−Scripting Guide

Chapter 17. Here Documents 229

Hello, there, $NAME.
Greetings to you, $NAME, from $RESPONDENT.

This comment shows up in the output (why?).

Endofmessage

Note that the blank lines show up in the output.
So does the "comment".

exit 0

Quoting or escaping the "limit string" at the head of a here document disables parameter substitution within
its body. This has very limited usefulness.

Example 17−6. Parameter substitution turned off

#!/bin/bash
A 'cat' here document, but with parameter substitution disabled.

NAME="John Doe"
RESPONDENT="the author of this fine script"

cat <<'Endofmessage'

Hello, there, $NAME.
Greetings to you, $NAME, from $RESPONDENT.

Endofmessage

No parameter substitution when the "limit string" is quoted or escaped.
Either of the following at the head of the here document would have the same effect.
cat <<"Endofmessage"
cat <<\Endofmessage

exit 0

This is a useful script containing a here document with parameter substitution.

Example 17−7. upload: Uploads a file pair to "Sunsite" incoming directory

#!/bin/bash
upload.sh

Upload file pair (Filename.lsm, Filename.tar.gz)
to incoming directory at Sunsite (metalab.unc.edu).

E_ARGERROR=65

if [−z "$1"]
then
 echo "Usage: `basename $0` filename"
 exit $E_ARGERROR
fi

Filename=`basename $1` # Strips pathname out of file name.

Advanced Bash−Scripting Guide

Chapter 17. Here Documents 230

Server="metalab.unc.edu"
Directory="/incoming/Linux"
These need not be hard−coded into script,
but may instead be changed to command line argument.

Password="your.e−mail.address" # Change above to suit.

ftp −n $Server <<End−Of−Session
−n option disables auto−logon

user anonymous "$Password"
binary
bell # Ring 'bell' after each file transfer
cd $Directory
put "$Filename.lsm"
put "$Filename.tar.gz"
bye
End−Of−Session

exit 0

It is possible to use : as a dummy command accepting output from a here document. This, in effect, creates an
"anonymous" here document.

Example 17−8. "Anonymous" Here Document

#!/bin/bash

: <<TESTVARIABLES
${HOSTNAME?}${USER?}${MAIL?} # Print error message if one of the variables not set.
TESTVARIABLES

exit 0

Here documents create temporary files, but these files are deleted after opening and are not
accessible to any other process.

bash$ bash −c 'lsof −a −p $$ −d0' << EOF
> EOF
lsof 1213 bozo 0r REG 3,5 0 30386 /tmp/t1213−0−sh (deleted)

Some utilities will not work inside a here document.

For those tasks too complex for a "here document", consider using the expect scripting language, which is
specifically tailored for feeding input into interactive programs.

Advanced Bash−Scripting Guide

Chapter 17. Here Documents 231

Chapter 18. Recess Time

 This bizarre little intermission gives the reader a chance to
 relax and maybe laugh a bit.

 Fellow Linux user, greetings! You are reading something
 which will bring you luck and good fortune. Just e−mail a
 copy of this document to 10 of your friends. Before you make
 the copies, send a 100−line Bash script to the first person
 on the list given at the bottom of this letter. Then delete
 their name and add yours to the bottom of the list.

 Don't break the chain! Make the copies within 48 hours.
 Wilfred P. of Brooklyn failed to send out his ten copies and
 woke the next morning to find his job description changed
 to "COBOL programmer." Howard L. of Newport News sent
 out his ten copies and within a month had enough hardware
 to build a 100−node Beowulf cluster dedicated to playing

xbill. Amelia V. of Chicago laughed at this letter and
 broke the chain. Shortly thereafter, a fire broke out in her
 terminal and she now spends her days writing documentation
 for MS Windows.

 Don't break the chain! Send out your ten copies today!

Courtesy 'NIX "fortune cookies", with some alterations and
many apologies

Part 4. Advanced Topics

Table of Contents
19. Regular Expressions

19.1. A Brief Introduction to Regular Expressions
19.2. Globbing

20. Subshells
21. Restricted Shells
22. Process Substitution
23. Functions

23.1. Complex Functions and Function Complexities
23.2. Local Variables

24. Aliases
25. List Constructs
26. Arrays
27. Files
28. /dev and /proc

Chapter 18. Recess Time 232

28.1. /dev
28.2. /proc

29. Of Zeros and Nulls
30. Debugging
31. Options
32. Gotchas
33. Scripting With Style

33.1. Unofficial Shell Scripting Stylesheet
34. Miscellany

34.1. Interactive and non−interactive shells and scripts
34.2. Shell Wrappers
34.3. Tests and Comparisons: Alternatives
34.4. Optimizations
34.5. Assorted Tips
34.6. Oddities
34.7. Portability Issues
34.8. Shell Scripting Under Windows

35. Bash, version 2

Advanced Bash−Scripting Guide

Chapter 18. Recess Time 233

Chapter 19. Regular Expressions

To fully utilize the power of shell scripting, you need to master Regular Expressions. Certain commands and
utilities commonly used in scripts, such as expr, sed and awk interpret and use REs.

19.1. A Brief Introduction to Regular Expressions

An expression is a string of characters. Those characters that have an interpretation above and beyond their
literal meaning are called metacharacters. A quote symbol, for example, may denote speech by a person,
ditto, or a meta−meaning for the symbols that follow. Regular Expressions are sets of characters and/or
metacharacters that UNIX endows with special features. [46]

The main uses for Regular Expressions (REs) are text searches and string manipulation. An RE matches a
single character or a set of characters (a substring or an entire string).

The asterisk * matches any number of repeats of the character string or RE preceding it, including
zero.

•

"1133*" matches 11 + one or more 3's + possibly other characters: 113,
1133, 111312, and so forth.

The dot . matches any one character, except a newline. [47]•

"13." matches 13 + at least one of any character (including a space):
1133, 11333, but not 13 (additional character missing).

The caret ^ matches the beginning of a line, but sometimes, depending on context, negates the
meaning of a set of characters in an RE.

•

•
The dollar sign $ at the end of an RE matches the end of a line.

"^$" matches blank lines.

Brackets [...] enclose a set of characters to match in a single RE. •

"[xyz]" matches the characters x, y, or z.

"[c−n]" matches any of the characters in the range c to n.

"[B−Pk−y]" matches any of the characters in the ranges B to P and k to y.

"[a−z0−9]" matches any lowercase letter or any digit.

"[^b−d]" matches all characters except those in the range b to d. This is an instance of ^ negating or
inverting the meaning of the following RE (taking on a role similar to ! in a different context).

Combined sequences of bracketed characters match common word patterns. "[Yy][Ee][Ss]" matches

Chapter 19. Regular Expressions 234

yes, Yes, YES, yEs, and so forth. "[0−9][0−9][0−9]−[0−9][0−9]−[0−9][0−9][0−9][0−9]" matches
any Social Security number.

The backslash \ escapes a special character, which means that character gets interpreted literally. •

A "\$" reverts back to its literal meaning of "$", rather than its RE meaning of end−of−line. Likewise
a "\\" has the literal meaning of "\".

•
Extended REs. Used in egrep, awk, and Perl

•
The question mark ? matches zero or one of the previous RE. It is generally used for matching single
characters.

•
The plus + matches one or more of the previous RE. It serves a role similar to the *, but does
not match zero occurrences.

GNU versions of sed and awk can use "+",
but it needs to be escaped.

echo a111b | sed −ne '/a1\+b/p'
echo a111b | grep 'a1\+b'
echo a111b | gawk '/a1+b/'
All of above are equivalent.

Thanks, S.C.

Escaped "curly brackets" \{ \} indicate the number of occurrences of a preceding RE to match. •

It is necessary to escape the curly brackets since they have only their literal character meaning
otherwise. This usage is technically not part of the basic RE set.

"[0−9]\{5\}" matches exactly five digits (characters in the range of 0 to 9).

Curly brackets are not available as an RE in the "classic" version of
awk. However, gawk has the −−re−interval option that permits
them (without being escaped).

bash$ echo 2222 | gawk −−re−interval '/2{3}/'
2222

Parentheses () enclose groups of REs. They are especially useful with the following "|" operator. •
The | "or" RE operator matches any of a set of alternate characters. •

bash$ egrep 're(a|e)d' misc.txt
People who read seem to be better informed than those who do not.
 The clarinet produces sound by the vibration of its reed.

•
POSIX Character Classes. [:class:]

Advanced Bash−Scripting Guide

Chapter 19. Regular Expressions 235

This is an alternate method of specifying a range of characters to match.

[:alnum:] matches alphabetic or numeric characters. This is equivalent to [A−Za−z0−9]. •
[:alpha:] matches alphabetic characters. This is equivalent to [A−Za−z]. •
[:blank:] matches a space or a tab. •
[:cntrl:] matches control characters. •
[:digit:] matches (decimal) digits. This is equivalent to [0−9]. •
[:graph:] (graphic printable characters). Matches characters in the range of ASCII 33 − 126. This
is the same as [:print:], below, but excluding the space character.

•

[:lower:] matches lowercase alphabetic characters. This is equivalent to [a−z]. •
[:print:] (printable characters). Matches characters in the range of ASCII 32 − 126. This is the
same as [:graph:], above, but adding the space character.

•

[:space:] matches whitespace characters (space and horizontal tab). •
[:upper:] matches uppercase alphabetic characters. This is equivalent to [A−Z]. •
[:xdigit:] matches hexadecimal digits. This is equivalent to [0−9A−Fa−f].

POSIX character classes generally require quoting or double brackets ([[]]).

bash$ grep [[:digit:]] test.file
abc=723

These character classes may even be used with globbing, to a limited extent.

bash$ ls −l ?[[:digit:]][[:digit:]]?
−rw−rw−r−− 1 bozo bozo 0 Aug 21 14:47 a33b

To see POSIX character classes used in scripts, refer to Example 12−14 and
Example 12−15.

•

Sed, awk, and Perl, used as filters in scripts, take REs as arguments when "sifting" or transforming files or
I/O streams. See Example A−7 and Example A−12 for illustrations of this.

"Sed & Awk", by Dougherty and Robbins gives a very complete and lucid treatment of REs (see the
Bibliography).

19.2. Globbing

Bash itself cannot recognize Regular Expressions. In scripts, commands and utilities, such as sed and awk,
interpret RE's.

Bash does carry out filename expansion, a process known as "globbing", but this does not use the standard
RE set. Instead, globbing recognizes and expands wildcards. Globbing interprets the standard wildcard
characters, * and ?, character lists in square brackets, and certain other special characters (such as ^ for
negating the sense of a match). There are some important limitations on wildcard characters in globbing,
however. Strings containing * will not match filenames that start with a dot, as, for example, .bashrc.
[48] Likewise, the ? has a different meaning in globbing than as part of an RE.

Advanced Bash−Scripting Guide

19.2. Globbing 236

bash$ ls −l
total 2
 −rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 a.1
 −rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 b.1
 −rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 c.1
 −rw−rw−r−− 1 bozo bozo 466 Aug 6 17:48 t2.sh
 −rw−rw−r−− 1 bozo bozo 758 Jul 30 09:02 test1.txt

bash$ ls −l t?.sh
−rw−rw−r−− 1 bozo bozo 466 Aug 6 17:48 t2.sh

bash$ ls −l [ab]*
−rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 a.1
 −rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 b.1

bash$ ls −l [a−c]*
−rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 a.1
 −rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 b.1
 −rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 c.1

bash$ ls −l [^ab]*
−rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 c.1
 −rw−rw−r−− 1 bozo bozo 466 Aug 6 17:48 t2.sh
 −rw−rw−r−− 1 bozo bozo 758 Jul 30 09:02 test1.txt

bash$ ls −l {b*,c*,*est*}
−rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 b.1
 −rw−rw−r−− 1 bozo bozo 0 Aug 6 18:42 c.1
 −rw−rw−r−− 1 bozo bozo 758 Jul 30 09:02 test1.txt

bash$ echo *
a.1 b.1 c.1 t2.sh test1.txt

bash$ echo t*
t2.sh test1.txt

Even an echo command performs wildcard expansion on filenames.

See also Example 10−4.

Advanced Bash−Scripting Guide

19.2. Globbing 237

Chapter 20. Subshells

Running a shell script launches another instance of the command processor. Just as your commands are
interpreted at the command line prompt, similarly does a script batch process a list of commands in a file.
Each shell script running is, in effect, a subprocess of the parent shell, the one that gives you the prompt at
the console or in an xterm window.

A shell script can also launch subprocesses. These subshells let the script do parallel processing, in effect
executing multiple subtasks simultaneously.

Command List in Parentheses

(command1; command2; command3; ...)

A command list embedded between parentheses runs as a subshell.

Variables in a subshell are not visible outside the block
of code in the subshell. They are not accessible to the
parent process, to the shell that launched the subshell.
These are, in effect, local variables.

Example 20−1. Variable scope in a subshell

#!/bin/bash
subshell.sh

echo

outer_variable=Outer

(
inner_variable=Inner
echo "From subshell, \"inner_variable\" = $inner_variable"
echo "From subshell, \"outer\" = $outer_variable"
)

echo

if [−z "$inner_variable"]
then
 echo "inner_variable undefined in main body of shell"
else
 echo "inner_variable defined in main body of shell"
fi

echo "From main body of shell, \"inner_variable\" = $inner_variable"
$inner_variable will show as uninitialized because
variables defined in a subshell are "local variables".

echo

exit 0

Chapter 20. Subshells 238

#LOCALREF

See also Example 32−1.

+

Directory changes made in a subshell do not carry over to the parent shell.

Example 20−2. List User Profiles

#!/bin/bash
allprofs.sh: print all user profiles

This script written by Heiner Steven, and modified by the document author.

FILE=.bashrc # File containing user profile,
 #+ was ".profile" in original script.

for home in `awk −F: '{print $6}' /etc/passwd`
do
 [−d "$home"] || continue # If no home directory, go to next.
 [−r "$home"] || continue # If not readable, go to next.
 (cd $home; [−e $FILE] && less $FILE)
done

When script terminates, there is no need to 'cd' back to original directory,
#+ because 'cd $home' takes place in a subshell.

exit 0

A subshell may be used to set up a "dedicated environment" for a command group.

COMMAND1
COMMAND2
COMMAND3
(
 IFS=:
 PATH=/bin
 unset TERMINFO
 set −C
 shift 5
 COMMAND4
 COMMAND5
 exit 3 # Only exits the subshell.
)
The parent shell has not been affected, and the environment is preserved.
COMMAND6
COMMAND7

One application of this is testing whether a variable is defined.
if (set −u; : $variable) 2> /dev/null
then
 echo "Variable is set."
fi

Could also be written [[${variable−x} != x || ${variable−y} != y]]
or [[${variable−x} != x$variable]]
or [[${variable+x} = x]])

Another application is checking for a lock file:
if (set −C; : > lock_file) 2> /dev/null

Advanced Bash−Scripting Guide

Chapter 20. Subshells 239

then
 echo "Another user is already running that script."
 exit 65
fi

Thanks, S.C.

Processes may execute in parallel within different subshells. This permits breaking a complex task into
subcomponents processed concurrently.

Example 20−3. Running parallel processes in subshells

 (cat list1 list2 list3 | sort | uniq > list123) &
 (cat list4 list5 list6 | sort | uniq > list456) &
 # Merges and sorts both sets of lists simultaneously.
 # Running in background ensures parallel execution.
 #
 # Same effect as
 # cat list1 list2 list3 | sort | uniq > list123 &
 # cat list4 list5 list6 | sort | uniq > list456 &

 wait # Don't execute the next command until subshells finish.

 diff list123 list456

Redirecting I/O to a subshell uses the "|" pipe operator, as in ls −al | (command).

A command block between curly braces does
not launch a subshell.

{ command1; command2; command3; ... }

Advanced Bash−Scripting Guide

Chapter 20. Subshells 240

Chapter 21. Restricted Shells
Disabled commands in restricted shells

Running a script or portion of a script in restricted mode disables certain commands that would
otherwise be available. This is a security measure intended to limit the privileges of the script user
and to minimize possible damage from running the script.

Using cd to change the working directory.

Changing the values of the $PATH, $SHELL, $BASH_ENV, or $ENV environmental variables.

Reading or changing the $SHELLOPTS, shell environmental options.

Output redirection.

Invoking commands containing one or more /'s.

Invoking exec to substitute a different process for the shell.

Various other commands that would enable monkeying with or attempting to subvert the script for an
unintended purpose.

Getting out of restricted mode within the script.

Example 21−1. Running a script in restricted mode

#!/bin/bash
Starting the script with "#!/bin/bash −r"
runs entire script in restricted mode.

echo

echo "Changing directory."
cd /usr/local
echo "Now in `pwd`"
echo "Coming back home."
cd
echo "Now in `pwd`"
echo

Everything up to here in normal, unrestricted mode.

set −r
set −−restricted has same effect.
echo "==> Now in restricted mode. <=="

echo
echo

echo "Attempting directory change in restricted mode."
cd ..
echo "Still in `pwd`"

Chapter 21. Restricted Shells 241

echo
echo

echo "\$SHELL = $SHELL"
echo "Attempting to change shell in restricted mode."
SHELL="/bin/ash"
echo
echo "\$SHELL= $SHELL"

echo
echo

echo "Attempting to redirect output in restricted mode."
ls −l /usr/bin > bin.files
ls −l bin.files # Try to list attempted file creation effort.

echo

exit 0

Advanced Bash−Scripting Guide

Chapter 21. Restricted Shells 242

Chapter 22. Process Substitution
Process substitution is the counterpart to command substitution. Command substitution sets a
variable to the result of a command, as in dir_contents=`ls −al` or xref=$(grep word datafile). Process
substitution feeds the output of a process to another process (in other words, it sends the results of a
command to another command).

Command substitution template

command within parentheses

>(command)

<(command)

These initiate process substitution. This uses /dev/fd/<n> files to send the results of the process
within parentheses to another process. [49]

There is no space between the the "<" or ">" and
the parentheses. Space there would give an error
message.

bash$ echo >(true)
/dev/fd/63

bash$ echo <(true)
/dev/fd/63

Bash creates a pipe with two file descriptors, −−fIn and fOut−−. The stdin of true connects to
fOut (dup2(fOut, 0)), then Bash passes a /dev/fd/fIn argument to echo. On systems lacking
/dev/fd/<n> files, Bash may use temporary files. (Thanks, S.C.)

cat <(ls −l)
Same as ls −l | cat

sort −k 9 <(ls −l /bin) <(ls −l /usr/bin) <(ls −l /usr/X11R6/bin)
Lists all the files in the 3 main 'bin' directories, and sorts by filename.
Note that three (count 'em) distinct commands are fed to 'sort'.

diff <(command1) <(command2) # Gives difference in command output.

tar cf >(bzip2 −c > file.tar.bz2) dir
Calls "tar cf /dev/fd/?? dir", and "bzip2 −c > file.tar.bz2".
#
Because of the /dev/fd/<n> system feature,
the pipe between both commands does not need to be named.
#
This can be emulated.
#
bzip2 −c < pipe > file.tar.bz2&
tar cf pipe dir
rm pipe

Chapter 22. Process Substitution 243

or
exec 3>&1
tar cf /dev/fd/4 dir 4>&1 >&3 3>&− | bzip2 −c > file.tar.bz2 3>&−
exec 3>&−

Thanks, S.C.

A reader of this document sent in the following interesting example of process substitution.

Script fragment taken from SuSE distribution:

while read des what mask iface; do
Some commands ...
done < <(route −n)

To test it, let's make it do something.
while read des what mask iface; do
 echo $des $what $mask $iface
done < <(route −n)

Output:
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

As S.C. points out, an easier−to−understand equivalent is:
route −n |
 while read des what mask iface; do # Variables set from output of pipe.
 echo $des $what $mask $iface
 done # Same output as above.

Advanced Bash−Scripting Guide

Chapter 22. Process Substitution 244

Chapter 23. Functions

Like "real" programming languages, Bash has functions, though in a somewhat limited implementation. A
function is a subroutine, a code block that implements a set of operations, a "black box" that performs a
specified task. Wherever there is repetitive code, when a task repeats with only slight variations, then
consider using a function.

function function_name {
command...
}

or

function_name () {
command...
}

This second form will cheer the hearts of C programmers (and is more portable).

As in C, the function's opening bracket may optionally appear on the second line.

function_name ()
{
command...
}

Functions are called, triggered, simply by invoking their names.

Example 23−1. Simple function

#!/bin/bash

funky ()
{
 echo "This is a funky function."
 echo "Now exiting funky function."
} # Function declaration must precede call.

 # Now, call the function.

funky

exit 0

The function definition must precede the first call to it. There is no method of "declaring" the function, as, for
example, in C.

f1
Will give an error message, since function "f1" not yet defined.

However...

Chapter 23. Functions 245

f1 ()
{
 echo "Calling function \"f2\" from within function \"f1\"."
 f2
}

f2 ()
{
 echo "Function \"f2\"."
}

f1 # Function "f2" is not actually called until this point,
 # although it is referenced before its definition.
 # This is permissable.

Thanks, S.C.

It is even possible to nest a function within another function, although this is not very useful.

f1 ()
{

 f2 () # nested
 {
 echo "Function \"f2\", inside \"f1\"."
 }

}

f2
Gives an error message.

f1 # Does nothing, since calling "f1" does not automatically call "f2".
f2 # Now, it's all right to call "f2",
 # since its definition has been made visible by calling "f1".

Thanks, S.C.

Function declarations can appear in unlikely places, even where a command would otherwise go.

ls −l | foo() { echo "foo"; } # Permissable, but useless.

if ["$USER" = bozo]
then
 bozo_greet () # Function definition embedded in an if/then construct.
 {
 echo "Hello, Bozo."
 }
fi

bozo_greet # Works only for Bozo, and other users get an error.

Something like this might be useful in some contexts.
NO_EXIT=1 # Will enable function definition below.

Advanced Bash−Scripting Guide

Chapter 23. Functions 246

[[$NO_EXIT −eq 1]] && exit() { true; } # Function definition in an "and−list".
If $NO_EXIT is 1, declares "exit ()".
This disables the "exit" builtin by aliasing it to "true".

exit # Invokes "exit ()" function, not "exit" builtin.

Thanks, S.C.

23.1. Complex Functions and Function Complexities

Functions may process arguments passed to them and return an exit status to the script for further processing.

function_name $arg1 $arg2

The function refers to the passed arguments by position (as if they were positional parameters), that is, $1,
$2, and so forth.

Example 23−2. Function Taking Parameters

#!/bin/bash

func2 () {
 if [−z "$1"] # Checks if parameter #1 is zero length.
 then
 echo "−Parameter #1 is zero length.−" # Also if no parameter is passed.
 else
 echo "−Param #1 is \"$1\".−"
 fi

 if ["$2"]
 then
 echo "−Parameter #2 is \"$2\".−"
 fi

 return 0
}

echo

echo "Nothing passed."
func2 # Called with no params
echo

echo "Zero−length parameter passed."
func2 "" # Called with zero−length param
echo

echo "Null parameter passed."
func2 "$uninitialized_param" # Called with uninitialized param
echo

echo "One parameter passed."
func2 first # Called with one param
echo

Advanced Bash−Scripting Guide

23.1. Complex Functions and Function Complexities 247

echo "Two parameters passed."
func2 first second # Called with two params
echo

echo "\"\" \"second\" passed."
func2 "" second # Called with zero−length first parameter
echo # and ASCII string as a second one.

exit 0

In contrast to certain other programming languages, shell
scripts normally pass only value parameters to functions.
[50] Variable names (which are actually pointers), if
passed as parameters to functions, will be treated as string
literals and cannot be dereferenced. Functions interpret
their arguments literally.

Exit and Return

exit status

Functions return a value, called an exit status. The exit status may be explicitly specified by a
return statement, otherwise it is the exit status of the last command in the function (0 if successful,
and a non−zero error code if not). This exit status may be used in the script by referencing it as $?.
This mechanism effectively permits script functions to have a "return value" similar to C functions.

return

Terminates a function. A return command [51] optionally takes an integer argument, which is
returned to the calling script as the "exit status" of the function, and this exit status is assigned to the
variable $?.

Example 23−3. Maximum of two numbers

#!/bin/bash
max.sh: Maximum of two integers.

E_PARAM_ERR=−198 # If less than 2 params passed to function.
EQUAL=−199 # Return value if both params equal.

max2 () # Returns larger of two numbers.
{ # Note: numbers compared must be less than 257.
if [−z "$2"]
then
 return $E_PARAM_ERR
fi

if ["$1" −eq "$2"]
then
 return $EQUAL
else
 if ["$1" −gt "$2"]
 then

Advanced Bash−Scripting Guide

23.1. Complex Functions and Function Complexities 248

 return $1
 else
 return $2
 fi
fi
}

max2 33 34
return_val=$?

if ["$return_val" −eq $E_PARAM_ERR]
then
 echo "Need to pass two parameters to the function."
elif ["$return_val" −eq $EQUAL]
 then
 echo "The two numbers are equal."
else
 echo "The larger of the two numbers is $return_val."
fi

exit 0

Exercise for the reader (easy):
Convert this to an interactive script,
that is, have the script ask for input (two numbers).

For a function to return a string or array, use a dedicated variable.

count_lines_in_etc_passwd()
{
 [[−r /etc/passwd]] && REPLY=$(echo $(wc −l < /etc/passwd))
 # If /etc/passwd is readable, set REPLY to line count.
 # Returns both a parameter value and status information.
}

if count_lines_in_etc_passwd
then
 echo "There are $REPLY lines in /etc/passwd."
else
 echo "Cannot count lines in /etc/passwd."
fi

Thanks, S.C.

Example 23−4. Converting numbers to Roman numerals

#!/bin/bash

Arabic number to Roman numeral conversion
Range: 0 − 200
It's crude, but it works.

Extending the range and otherwise improving the script
is left as an exercise for the reader.

Usage: roman number−to−convert

LIMIT=200

Advanced Bash−Scripting Guide

23.1. Complex Functions and Function Complexities 249

E_ARG_ERR=65
E_OUT_OF_RANGE=66

if [−z "$1"]
then
 echo "Usage: `basename $0` number−to−convert"
 exit $E_ARG_ERR
fi

num=$1
if ["$num" −gt $LIMIT]
then
 echo "Out of range!"
 exit $E_OUT_OF_RANGE
fi

to_roman () # Must declare function before first call to it.
{
number=$1
factor=$2
rchar=$3
let "remainder = number − factor"
while ["$remainder" −ge 0]
do
 echo −n $rchar
 let "number −= factor"
 let "remainder = number − factor"
done

return $number
 # Exercise for the reader:
 # Explain how this function works.
 # Hint: division by successive subtraction.
}

to_roman $num 100 C
num=$?
to_roman $num 90 LXXXX
num=$?
to_roman $num 50 L
num=$?
to_roman $num 40 XL
num=$?
to_roman $num 10 X
num=$?
to_roman $num 9 IX
num=$?
to_roman $num 5 V
num=$?
to_roman $num 4 IV
num=$?
to_roman $num 1 I

echo

exit 0

See also Example 10−26.

Advanced Bash−Scripting Guide

23.1. Complex Functions and Function Complexities 250

The largest positive integer a function can return is 256. The return command is
closely tied to the concept of exit status, which accounts for this particular limitation.
Fortunately, there are workarounds for those situations requiring a large integer return
value from a function.

Example 23−5. Testing large return values in a function

#!/bin/bash
return−test.sh

The largest positive value a function can return is 256.

return_test () # Returns whatever passed to it.
{
 return $1
}

return_test 27 # o.k.
echo $? # Returns 27.

return_test 256 # Still o.k.
echo $? # Returns 256.

return_test 257 # Error!
echo $? # Returns 1 (return code for miscellaneous error).

return_test −151896 # However, large negative numbers work.
echo $? # Returns −151896.

exit 0

As we have seen, a function can return a large negative value. This also permits
returning large positive integer, using a bit of trickery.

An alternate method of accomplishing this is to simply assign the "return value" to a
global variable.

Return_Val= # Global variable to hold oversize return value of function.

alt_return_test ()
{
 fvar=$1
 Return_Val=$fvar
 return # Returns 0 (success).
}

alt_return_test 1
echo $? # 0
echo "return value = $Return_Val" # 1

alt_return_test 256
echo "return value = $Return_Val" # 256

alt_return_test 257
echo "return value = $Return_Val" # 257

alt_return_test 25701

Advanced Bash−Scripting Guide

23.1. Complex Functions and Function Complexities 251

echo "return value = $Return_Val" #25701

Example 23−6. Comparing two large integers

#!/bin/bash
max2.sh: Maximum of two LARGE integers.

This is the previous "max.sh" example,
modified to permit comparing large integers.

EQUAL=0 # Return value if both params equal.
MAXRETVAL=256 # Maximum positive return value from a function.
E_PARAM_ERR=−99999 # Parameter error.
E_NPARAM_ERR=99999 # "Normalized" parameter error.

max2 () # Returns larger of two numbers.
{
if [−z "$2"]
then
 return $E_PARAM_ERR
fi

if ["$1" −eq "$2"]
then
 return $EQUAL
else
 if ["$1" −gt "$2"]
 then
 retval=$1
 else
 retval=$2
 fi
fi

−−
This is a workaround to enable returning a large integer
from this function.
if ["$retval" −gt "$MAXRETVAL"] # If out of range,
then # then
 let "retval = ((0 − $retval))" # adjust to a negative value.
 # ((0 − $VALUE)) changes the sign of VALUE.
fi
Large *negative* return values permitted, fortunately.
−−

return $retval
}

max2 33001 33997
return_val=$?

−−
if ["$return_val" −lt 0] # If "adjusted" negative number,
then # then
 let "return_val = ((0 − $return_val))" # renormalize to positive.
fi # "Absolute value" of $return_val.
−−

if ["$return_val" −eq "$E_NPARAM_ERR"]
then # Parameter error "flag" gets sign changed, too.

Advanced Bash−Scripting Guide

23.1. Complex Functions and Function Complexities 252

 echo "Error: Too few parameters."
elif ["$return_val" −eq "$EQUAL"]
 then
 echo "The two numbers are equal."
else
 echo "The larger of the two numbers is $return_val."
fi

exit 0

See also Example A−6.

Exercise for the reader: Using what we have just learned, extend the
previous Roman numerals example to accept arbitrarily large input.

Redirection

Redirecting the stdin of a function

A function is essentially a code block, which means its stdin can be redirected (as in Example 4−1).

Example 23−7. Real name from username

#!/bin/bash

From username, gets "real name" from /etc/passwd.

ARGCOUNT=1 # Expect one arg.
E_WRONGARGS=65

file=/etc/passwd
pattern=$1

if [$# −ne "$ARGCOUNT"]
then
 echo "Usage: `basename $0` USERNAME"
 exit $E_WRONGARGS
fi

file_excerpt () # Scan file for pattern, the print relevant portion of line.
{
while read line # while does not necessarily need "[condition]"
do
 echo "$line" | grep $1 | awk −F":" '{ print $5 }' # Have awk use ":" delimiter.
done
} <$file # Redirect into function's stdin.

file_excerpt $pattern

Yes, this entire script could be reduced to
grep PATTERN /etc/passwd | awk −F":" '{ print $5 }'
or
awk −F: '/PATTERN/ {print $5}'
or
awk −F: '($1 == "username") { print $5 }' # real name from username
However, it might not be as instructive.

Advanced Bash−Scripting Guide

23.1. Complex Functions and Function Complexities 253

exit 0

There is an alternative, and perhaps less confusing method of redirecting a function's stdin. This
involves redirecting the stdin to an embedded bracketed code block within the function.

Instead of:
Function ()
{
 ...
 } < file

Try this:
Function ()
{
 {
 ...
 } < file
}

Similarly,

Function () # This works.
{
 {
 echo $*
 } | tr a b
}

Function () # This doesn't work.
{
 echo $*
} | tr a b # A nested code block is mandatory here.

Thanks, S.C.

23.2. Local Variables

What makes a variable "local"?

local variables

A variable declared as local is one that is visible only within the block of code in which it appears. It
has local "scope". In a function, a local variable has meaning only within that function block.

Example 23−8. Local variable visibility

#!/bin/bash

func ()
{
 local loc_var=23 # Declared local.
 echo
 echo "\"loc_var\" in function = $loc_var"
 global_var=999 # Not declared local.

Advanced Bash−Scripting Guide

23.2. Local Variables 254

 echo "\"global_var\" in function = $global_var"
}

func

Now, see if local 'a' exists outside function.

echo
echo "\"loc_var\" outside function = $loc_var"
 # "loc_var" outside function =
 # Nope, $loc_var not visible globally.
echo "\"global_var\" outside function = $global_var"
 # "global_var" outside function = 999
 # $global_var is visible globally.
echo

exit 0

Before a function is called, all variables declared within the function are invisible
outside the body of the function, not just those explicitly declared as local.

#!/bin/bash

func ()
{
global_var=37 # Visible only within the function block
 #+ before the function has been called.
} # END OF FUNCTION

echo "global_var = $global_var" # global_var =
 # Function "func" has not yet been called,
 #+ so $global_var is not visible here.

func
echo "global_var = $global_var" # global_var = 37
 # Has been set by function call.

23.2.1. Local variables make recursion possible.

Local variables permit recursion, [52] but this practice generally involves much computational overhead and
is definitely not recommended in a shell script. [53]

Example 23−9. Recursion, using a local variable

#!/bin/bash

factorial
−−−−−−−−−

Does bash permit recursion?
Well, yes, but...
You gotta have rocks in your head to try it.

Advanced Bash−Scripting Guide

23.2.1. Local variables make recursion possible. 255

MAX_ARG=5
E_WRONG_ARGS=65
E_RANGE_ERR=66

if [−z "$1"]
then
 echo "Usage: `basename $0` number"
 exit $E_WRONG_ARGS
fi

if ["$1" −gt $MAX_ARG]
then
 echo "Out of range (5 is maximum)."
 # Let's get real now.
 # If you want greater range than this,
 # rewrite it in a real programming language.
 exit $E_RANGE_ERR
fi

fact ()
{
 local number=$1
 # Variable "number" must be declared as local,
 # otherwise this doesn't work.
 if ["$number" −eq 0]
 then
 factorial=1 # Factorial of 0 = 1.
 else
 let "decrnum = number − 1"
 fact $decrnum # Recursive function call.
 let "factorial = $number * $?"
 fi

 return $factorial
}

fact $1
echo "Factorial of $1 is $?."

exit 0

See also Example A−11 for an example of recursion in a script. Be aware that recursion is resource−intensive
and executes slowly, and is therefore generally not appropriate to use in a script.

Advanced Bash−Scripting Guide

23.2.1. Local variables make recursion possible. 256

Chapter 24. Aliases

A Bash alias is essentially nothing more than a keyboard shortcut, an abbreviation, a means of avoiding
typing a long command sequence. If, for example, we include alias lm="ls −l | more" in the
~/.bashrc file, then each lm typed at the command line will automatically be replaced by a ls −l | more.
This can save a great deal of typing at the command line and avoid having to remember complex
combinations of commands and options. Setting alias rm="rm −i" (interactive mode delete) may save a
good deal of grief, since it can prevent inadvertently losing important files.

In a script, aliases have very limited usefulness. It would be quite nice if aliases could assume some of the
functionality of the C preprocessor, such as macro expansion, but unfortunately Bash does not expand
arguments within the alias body. [54] Moreover, a script fails to expand an alias itself within "compound
constructs", such as if/then statements, loops, and functions. An added limitation is that an alias will not
expand recursively. Almost invariably, whatever we would like an alias to do could be accomplished much
more effectively with a function.

Example 24−1. Aliases within a script

#!/bin/bash
May need to be invoked with #!/bin/bash2 on older systems.

shopt −s expand_aliases
Must set this option, else script will not expand aliases.

First, some fun.
alias Jesse_James='echo "\"Alias Jesse James\" was a 1959 comedy starring Bob Hope."'
Jesse_James

echo; echo; echo;

alias ll="ls −l"
May use either single (') or double (") quotes to define an alias.

echo "Trying aliased \"ll\":"
ll /usr/X11R6/bin/mk* #* Alias works.

echo

directory=/usr/X11R6/bin/
prefix=mk* # See if wild−card causes problems.
echo "Variables \"directory\" + \"prefix\" = $directory$prefix"
echo

alias lll="ls −l $directory$prefix"

echo "Trying aliased \"lll\":"
lll # Long listing of all files in /usr/X11R6/bin stating with mk.
Alias handles concatenated variables, including wild−card o.k.

TRUE=1

Chapter 24. Aliases 257

#FILESREF

echo

if [TRUE]
then
 alias rr="ls −l"
 echo "Trying aliased \"rr\" within if/then statement:"
 rr /usr/X11R6/bin/mk* #* Error message results!
 # Aliases not expanded within compound statements.
 echo "However, previously expanded alias still recognized:"
 ll /usr/X11R6/bin/mk*
fi

echo

count=0
while [$count −lt 3]
do
 alias rrr="ls −l"
 echo "Trying aliased \"rrr\" within \"while\" loop:"
 rrr /usr/X11R6/bin/mk* #* Alias will not expand here either.
 let count+=1
done

echo; echo

alias xyz="cat $1" # Try a positional parameter in an alias.
xyz # If you invoke the script with a filename as a parameter.
This seems to work,
#+ although the Bash documentation suggests that it shouldn't.

exit 0

The unalias command removes a previously set alias.

Example 24−2. unalias: Setting and unsetting an alias

#!/bin/bash

shopt −s expand_aliases # Enables alias expansion.

alias llm='ls −al | more'
llm

echo

unalias llm # Unset alias.
llm
Error message results, since 'llm' no longer recognized.

exit 0

bash$./unalias.sh
total 6
drwxrwxr−x 2 bozo bozo 3072 Feb 6 14:04 .
drwxr−xr−x 40 bozo bozo 2048 Feb 6 14:04 ..
−rwxr−xr−x 1 bozo bozo 199 Feb 6 14:04 unalias.sh

./unalias.sh: llm: command not found

Advanced Bash−Scripting Guide

Chapter 24. Aliases 258

Advanced Bash−Scripting Guide

Chapter 24. Aliases 259

Chapter 25. List Constructs

The "and list" and "or list" constructs provide a means of processing a number of commands consecutively.
These can effectively replace complex nested if/then or even case statements.

Chaining together commands

and list

command−1 && command−2 && command−3 && ... command−n

Each command executes in turn provided that the previous command has given a return value of
true (zero). At the first false (non−zero) return, the command chain terminates (the first command
returning false is the last one to execute).

Example 25−1. Using an "and list" to test for command−line arguments

#!/bin/bash
"and list"

if [! −z "$1"] && echo "Argument #1 = $1" && [! −z "$2"] && echo "Argument #2 = $2"
then
 echo "At least 2 arguments passed to script."
 # All the chained commands return true.
else
 echo "Less than 2 arguments passed to script."
 # At least one of the chained commands returns false.
fi
Note that "if [! −z $1]" works, but its supposed equivalent,
if [−n $1] does not. However, quoting fixes this.
if [−n "$1"] works. Careful!
It is best to always quote tested variables.

This accomplishes the same thing, using "pure" if/then statements.
if [! −z "$1"]
then
 echo "Argument #1 = $1"
fi
if [! −z "$2"]
then
 echo "Argument #2 = $2"
 echo "At least 2 arguments passed to script."
else
 echo "Less than 2 arguments passed to script."
fi
It's longer and less elegant than using an "and list".

exit 0

Example 25−2. Another command−line arg test using an "and list"

#!/bin/bash

ARGS=1 # Number of arguments expected.

Chapter 25. List Constructs 260

E_BADARGS=65 # Exit value if incorrect number of args passed.

test $# −ne $ARGS && echo "Usage: `basename $0` $ARGS argument(s)" && exit $E_BADARGS
If condition−1 true (wrong number of args passed to script),
then the rest of the line executes, and script terminates.

Line below executes only if the above test fails.
echo "Correct number of arguments passed to this script."

exit 0

To check exit value, do a "echo $?" after script termination.

or list

command−1 || command−2 || command−3 || ... command−n

Each command executes in turn for as long as the previous command returns false. At the first
true return, the command chain terminates (the first command returning true is the last one to
execute). This is obviously the inverse of the "and list".

Example 25−3. Using "or lists" in combination with an "and list"

#!/bin/bash

"Delete", not−so−cunning file deletion utility.
Usage: delete filename

E_BADARGS=65

if [−z "$1"]
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

file=$1 # Set filename.

[! −f "$1"] && echo "File \"$1\" not found. \
Cowardly refusing to delete a nonexistent file."
AND LIST, to give error message if file not present.
Note echo message continued on to a second line with an escape.

[! −f "$1"] || (rm −f $1; echo "File \"$file\" deleted.")
OR LIST, to delete file if present.
(command1 ; command2) is, in effect, an AND LIST variant.

Note logic inversion above.
AND LIST executes on true, OR LIST on false.

exit 0

If the first command in an "or list" returns true, it
will execute.

The exit status of an and list or an or list is the
exit status of the last command executed.

Advanced Bash−Scripting Guide

Chapter 25. List Constructs 261

Clever combinations of "and" and "or" lists are possible, but the logic may easily become convoluted and
require extensive debugging.

false && true || echo false # false

Same result as
(false && true) || echo false # false
But *not*
false && (true || echo false) # (nothing echoed)

Note left−to−right grouping and evaluation of statements,
since the logic operators "&&" and "||" have equal precedence.

It's best to avoid such complexities, unless you know what you're doing.

Thanks, S.C.

See Example A−6 for an illustration of using an and / or list to test variables.

Advanced Bash−Scripting Guide

Chapter 25. List Constructs 262

Chapter 26. Arrays

Newer versions of bash support one−dimensional arrays. Arrays may be declared with the
variable[xx] notation or explicitly by a declare −a variable statement. To dereference (find the
contents of) an array variable, use curly bracket notation, that is, ${variable[xx]}.

Example 26−1. Simple array usage

#!/bin/bash

area[11]=23
area[13]=37
area[51]=UFOs

Array members need not be consecutive or contiguous.

Some members of the array can be left uninitialized.
Gaps in the array are o.k.

echo −n "area[11] = "
echo ${area[11]} # {curly brackets} needed

echo −n "area[13] = "
echo ${area[13]}

echo "Contents of area[51] are ${area[51]}."

Contents of uninitialized array variable print blank.
echo −n "area[43] = "
echo ${area[43]}
echo "(area[43] unassigned)"

echo

Sum of two array variables assigned to third
area[5]=`expr ${area[11]} + ${area[13]}`
echo "area[5] = area[11] + area[13]"
echo −n "area[5] = "
echo ${area[5]}

area[6]=`expr ${area[11]} + ${area[51]}`
echo "area[6] = area[11] + area[51]"
echo −n "area[6] = "
echo ${area[6]}
This fails because adding an integer to a string is not permitted.

echo; echo; echo

−−−
Another array, "area2".
Another way of assigning array variables...
array_name=(XXX YYY ZZZ ...)

area2=(zero one two three four)

Chapter 26. Arrays 263

echo −n "area2[0] = "
echo ${area2[0]}
Aha, zero−based indexing (first element of array is [0], not [1]).

echo −n "area2[1] = "
echo ${area2[1]} # [1] is second element of array.
−−−

echo; echo; echo

−−−
Yet another array, "area3".
Yet another way of assigning array variables...
array_name=([xx]=XXX [yy]=YYY ...)

area3=([17]=seventeen [24]=twenty−four)

echo −n "area3[17] = "
echo ${area3[17]}

echo −n "area3[24] = "
echo ${area3[24]}
−−−

exit 0

Arrays variables have a syntax all their own, and even standard Bash commands and operators have special
options adapted for array use.

 array=(zero one two three four five)

echo ${array[0]} # zero
echo ${array:0} # zero
 # Parameter expansion of first element.
echo ${array:1} # ero
 # Parameter expansion of first element,
 #+ starting at position #1 (2nd character).

echo ${#array} # 4
 # Length of first element of array.

In an array context, some Bash builtins have a slightly altered meaning. For example, unset deletes array
elements, or even an entire array.

Example 26−2. Some special properties of arrays

#!/bin/bash

declare −a colors
Permits declaring an array without specifying its size.

echo "Enter your favorite colors (separated from each other by a space)."

read −a colors # Enter at least 3 colors to demonstrate features below.
Special option to 'read' command,
#+ allowing assignment of elements in an array.

echo

Advanced Bash−Scripting Guide

Chapter 26. Arrays 264

element_count=${#colors[@]}
Special syntax to extract number of elements in array.
element_count=${#colors[*]} works also.
#
The "@" variable allows word splitting within quotes
#+ (extracts variables separated by whitespace).

index=0

while ["$index" −lt "$element_count"]
do # List all the elements in the array.
 echo ${colors[$index]}
 let "index = $index + 1"
done
Each array element listed on a separate line.
If this is not desired, use echo −n "${colors[$index]} "
#
Doing it with a "for" loop instead:
for i in "${colors[@]}"
do
echo "$i"
done
(Thanks, S.C.)

echo

Again, list all the elements in the array, but using a more elegant method.
 echo ${colors[@]} # echo ${colors[*]} also works.

echo

The "unset" command deletes elements of an array, or entire array.
unset colors[1] # Remove 2nd element of array.
 # Same effect as colors[1]=
echo ${colors[@]} # List array again, missing 2nd element.

unset colors # Delete entire array.
 # unset colors[*] and
 #+ unset colors[@] also work.
echo; echo −n "Colors gone."
echo ${colors[@]} # List array again, now empty.

exit 0

As seen in the previous example, either ${array_name[@]} or ${array_name[*]} refers to all the elements
of the array. Similarly, to get a count of the number of elements in an array, use either
${#array_name[@]} or ${#array_name[*]}. ${#array_name} is the length (number of characters) of
${array_name[0]}, the first element of the array.

Example 26−3. Of empty arrays and empty elements

#!/bin/bash
empty−array.sh

An empty array is not the same as an array with empty elements.

array0=(first second third)
array1=('') # "array1" has one empty element.

Advanced Bash−Scripting Guide

Chapter 26. Arrays 265

array2=() # No elements... "array2" is empty.

echo

echo "Elements in array0: ${array0[@]}"
echo "Elements in array1: ${array1[@]}"
echo "Elements in array2: ${array2[@]}"
echo
echo "Length of first element in array0 = ${#array0}"
echo "Length of first element in array1 = ${#array1}"
echo "Length of first element in array2 = ${#array2}"
echo
echo "Number of elements in array0 = ${#array0[*]}" # 3
echo "Number of elements in array1 = ${#array1[*]}" # 1 (surprise!)
echo "Number of elements in array2 = ${#array2[*]}" # 0

echo

exit 0 # Thanks, S.C.

The relationship of ${array_name[@]} and ${array_name[*]} is analogous to that between $@ and $*.
This powerful array notation has a number of uses.

Copying an array.
array2=("${array1[@]}")

Adding an element to an array.
array=("${array[@]}" "new element")
or
array[${#array[*]}]="new element"

Thanks, S.C.

−−

Arrays permit deploying old familiar algorithms as shell scripts. Whether this is necessarily a good idea is left
to the reader to decide.

Example 26−4. An old friend: The Bubble Sort

#!/bin/bash
bubble.sh: Bubble sort, of sorts.

Recall the algorithm for a bubble sort. In this particular version...

With each successive pass through the array to be sorted,
compare two adjacent elements, and swap them if out of order.
At the end of the first pass, the "heaviest" element has sunk to bottom.
At the end of the second pass, the next "heaviest" one has sunk next to bottom.
And so forth.
This means that each successive pass needs to traverse less of the array.
You will therefore notice a speeding up in the printing of the later passes.

exchange()
{
 # Swaps two members of the array.
 local temp=${Countries[$1]} # Temporary storage for element getting swapped out.

Advanced Bash−Scripting Guide

Chapter 26. Arrays 266

 Countries[$1]=${Countries[$2]}
 Countries[$2]=$temp

 return
}

declare −a Countries # Declare array, optional here since it's initialized below.

Countries=(Netherlands Ukraine Zaire Turkey Russia Yemen Syria Brazil Argentina Nicaragua Japan Mexico Venezuela Greece England Israel Peru Canada Oman Denmark Wales France Kenya Qatar Liechtenstein Hungary)
Couldn't think of one starting with X (darn!).

clear # Clear the screen to start with.

echo "0: ${Countries[*]}" # List entire array at pass 0.

number_of_elements=${#Countries[@]}
let "comparisons = $number_of_elements − 1"

count=1 # Pass number.

while ["$comparisons" −gt 0] # Beginning of outer loop
do

 index=0 # Reset index to start of array after each pass.

 while ["$index" −lt "$comparisons"] # Beginning of inner loop
 do
 if [${Countries[$index]} \> ${Countries[`expr $index + 1`]}]
 # If out of order...
 # Recalling that \> is ASCII comparison operator.

 # if [[${Countries[$index]} > ${Countries[`expr $index + 1`]}]]
 # also works.
 then
 exchange $index `expr $index + 1` # Swap.
 fi
 let "index += 1"
 done # End of inner loop

let "comparisons −= 1" # Since "heaviest" element bubbles to bottom,
 # we need do one less comparison each pass.

echo
echo "$count: ${Countries[@]}" # Print resultant array at end of each pass.
echo
let "count += 1" # Increment pass count.

done # End of outer loop

All done.

exit 0

−−

Arrays enable implementing a shell script version of the Sieve of Erastosthenes. Of course, a
resource−intensive application of this nature should really be written in a compiled language, such as C. It
runs excruciatingly slowly as a script.

Advanced Bash−Scripting Guide

Chapter 26. Arrays 267

Example 26−5. Complex array application: Sieve of Erastosthenes

#!/bin/bash
sieve.sh

Sieve of Erastosthenes
Ancient algorithm for finding prime numbers.

This runs a couple of orders of magnitude
slower than the equivalent C program.

LOWER_LIMIT=1 # Starting with 1.
UPPER_LIMIT=1000 # Up to 1000.
(You may set this higher... if you have time on your hands.)

PRIME=1
NON_PRIME=0

let SPLIT=UPPER_LIMIT/2
Optimization:
Need to test numbers only halfway to upper limit.

declare −a Primes
Primes[] is an array.

initialize ()
{
Initialize the array.

i=$LOWER_LIMIT
until ["$i" −gt "$UPPER_LIMIT"]
do
 Primes[i]=$PRIME
 let "i += 1"
done
Assume all array members guilty (prime)
until proven innocent.
}

print_primes ()
{
Print out the members of the Primes[] array tagged as prime.

i=$LOWER_LIMIT

until ["$i" −gt "$UPPER_LIMIT"]
do

 if ["${Primes[i]}" −eq "$PRIME"]
 then
 printf "%8d" $i
 # 8 spaces per number gives nice, even columns.
 fi

 let "i += 1"

done

}

Advanced Bash−Scripting Guide

Chapter 26. Arrays 268

sift () # Sift out the non−primes.
{

let i=$LOWER_LIMIT+1
We know 1 is prime, so let's start with 2.

until ["$i" −gt "$UPPER_LIMIT"]
do

if ["${Primes[i]}" −eq "$PRIME"]
Don't bother sieving numbers already sieved (tagged as non−prime).
then

 t=$i

 while ["$t" −le "$UPPER_LIMIT"]
 do
 let "t += $i "
 Primes[t]=$NON_PRIME
 # Tag as non−prime all multiples.
 done

fi

 let "i += 1"
done

}

Invoke the functions sequentially.
initialize
sift
print_primes
This is what they call structured programming.

echo

exit 0

−−−
Code below line will not execute.

This improved version of the Sieve, by Stephane Chazelas,
executes somewhat faster.

Must invoke with command−line argument (limit of primes).

UPPER_LIMIT=$1 # From command line.
let SPLIT=UPPER_LIMIT/2 # Halfway to max number.

Primes=('' $(seq $UPPER_LIMIT))

i=1
until (((i += 1) > SPLIT)) # Need check only halfway.
do
 if [[−n $Primes[i]]]
 then

Advanced Bash−Scripting Guide

Chapter 26. Arrays 269

 t=$i
 until (((t += i) > UPPER_LIMIT))
 do
 Primes[t]=
 done
 fi
done
echo ${Primes[*]}

exit 0

Compare this array−based prime number generator with with an alternative that does not use arrays, Example
A−11.

−−

Fancy manipulation of array "subscripts" may require intermediate variables. For projects involving this,
again consider using a more powerful programming language, such as Perl or C.

Example 26−6. Complex array application: Exploring a weird mathematical series

#!/bin/bash

Douglas Hofstadter's notorious "Q−series":

Q(1) = Q(2) = 1
Q(n) = Q(n − Q(n−1)) + Q(n − Q(n−2)), for n>2

This is a "chaotic" integer series with strange and unpredictable behavior.
The first 20 terms of the series are:
1 1 2 3 3 4 5 5 6 6 6 8 8 8 10 9 10 11 11 12

See Hofstadter's book, "Goedel, Escher, Bach: An Eternal Golden Braid",
p. 137, ff.

LIMIT=100 # Number of terms to calculate
LINEWIDTH=20 # Number of terms printed per line

Q[1]=1 # First two terms of series are 1.
Q[2]=1

echo
echo "Q−series [$LIMIT terms]:"
echo −n "${Q[1]} " # Output first two terms.
echo −n "${Q[2]} "

for ((n=3; n <= $LIMIT; n++)) # C−like loop conditions.
do # Q[n] = Q[n − Q[n−1]] + Q[n − Q[n−2]] for n>2
Need to break the expression into intermediate terms,
since Bash doesn't handle complex array arithmetic very well.

 let "n1 = $n − 1" # n−1
 let "n2 = $n − 2" # n−2

 t0=`expr $n − ${Q[n1]}` # n − Q[n−1]
 t1=`expr $n − ${Q[n2]}` # n − Q[n−2]

Advanced Bash−Scripting Guide

Chapter 26. Arrays 270

 T0=${Q[t0]} # Q[n − Q[n−1]]
 T1=${Q[t1]} # Q[n − Q[n−2]]

Q[n]=`expr $T0 + $T1` # Q[n − Q[n−1]] + Q[n − ![n−2]]
echo −n "${Q[n]} "

if [`expr $n % $LINEWIDTH` −eq 0] # Format output.
then # mod
 echo # Break lines into neat chunks.
fi

done

echo

exit 0

This is an iterative implementation of the Q−series.
The more intuitive recursive implementation
is left as an exercise for the reader.
Warning: calculating this series recursively takes a *very* long time.

−−

Bash supports only one−dimensional arrays, however a little trickery permits simulating multi−dimensional
ones.

Example 26−7. Simulating a two−dimensional array, then tilting it

#!/bin/bash
Simulating a two−dimensional array.

A two−dimensional array stores rows sequentially.

Rows=5
Columns=5

declare −a alpha # char alpha [Rows] [Columns];
 # Unnecessary declaration.

load_alpha ()
{
local rc=0
local index

for i in A B C D E F G H I J K L M N O P Q R S T U V W X Y
do
 local row=`expr $rc / $Columns`
 local column=`expr $rc % $Rows`
 let "index = $row * $Rows + $column"
 alpha[$index]=$i # alpha[$row][$column]
 let "rc += 1"
done

Simpler would be
declare −a alpha=(A B C D E F G H I J K L M N O P Q R S T U V W X Y)
but this somehow lacks the "flavor" of a two−dimensional array.
}

Advanced Bash−Scripting Guide

Chapter 26. Arrays 271

print_alpha ()
{
local row=0
local index

echo

while ["$row" −lt "$Rows"] # Print out in "row major" order −
do # columns vary
 # while row (outer loop) remains the same.
 local column=0

 while ["$column" −lt "$Columns"]
 do
 let "index = $row * $Rows + $column"
 echo −n "${alpha[index]} " # alpha[$row][$column]
 let "column += 1"
 done

 let "row += 1"
 echo

done

The simpler equivalent is
echo ${alpha[*]} | xargs −n $Columns

echo
}

filter () # Filter out negative array indices.
{

echo −n " " # Provides the tilt.

if [["$1" −ge 0 && "$1" −lt "$Rows" && "$2" −ge 0 && "$2" −lt "$Columns"]]
then
 let "index = $1 * $Rows + $2"
 # Now, print it rotated.
 echo −n " ${alpha[index]}" # alpha[$row][$column]
fi

}

rotate () # Rotate the array 45 degrees
{ # ("balance" it on its lower lefthand corner).
local row
local column

for ((row = Rows; row > −Rows; row−−)) # Step through the array backwards.
do

 for ((column = 0; column < Columns; column++))
 do

 if ["$row" −ge 0]
 then
 let "t1 = $column − $row"

Advanced Bash−Scripting Guide

Chapter 26. Arrays 272

 let "t2 = $column"
 else
 let "t1 = $column"
 let "t2 = $column + $row"
 fi

 filter $t1 $t2 # Filter out negative array indices.
 done

 echo; echo

done

Array rotation inspired by examples (pp. 143−146) in
"Advanced C Programming on the IBM PC", by Herbert Mayer
(see bibliography).

}

#−−−#
load_alpha # Load the array.
print_alpha # Print it out.
rotate # Rotate it 45 degrees counterclockwise.
#−−−#

This is a rather contrived, not to mention kludgy simulation.
#
Exercise #1 for the reader:
Rewrite the array loading and printing functions
in a more intuitive and elegant fashion.
#
Exercise #2:
Figure out how the array rotation functions work.
Hint: think about the implications of backwards−indexing an array.

exit 0

Advanced Bash−Scripting Guide

Chapter 26. Arrays 273

Chapter 27. Files
startup files

These files contain the aliases and environmental variables made available to Bash running as a user
shell and to all Bash scripts invoked after system initialization.

/etc/profile

systemwide defaults, mostly setting the environment (all Bourne−type shells, not just Bash [55])

/etc/bashrc

systemwide functions and and aliases for Bash

$HOME/.bash_profile

user−specific Bash environmental default settings, found in each user's home directory (the local
counterpart to /etc/profile)

$HOME/.bashrc

user−specific Bash init file, found in each user's home directory (the local counterpart to
/etc/bashrc). Only interactive shells and user scripts read this file. See Appendix G for a sample
.bashrc file.

logout file

$HOME/.bash_logout

user−specific instruction file, found in each user's home directory. Upon exit from a login (Bash)
shell, the commands in this file execute.

Chapter 27. Files 274

Chapter 28. /dev and /proc

A Linux or UNIX machine typically has two special−purpose directories, /dev and /proc.

28.1. /dev

The /dev directory contains entries for the physical devices that may or may not be present in the hardware.
[56] The hard drive partitions containing the mounted filesystem(s) have entries in /dev, as a simple
df shows.

bash$ df
Filesystem 1k−blocks Used Available Use%
 Mounted on
 /dev/hda6 495876 222748 247527 48% /
 /dev/hda1 50755 3887 44248 9% /boot
 /dev/hda8 367013 13262 334803 4% /home
 /dev/hda5 1714416 1123624 503704 70% /usr

Among other things, the /dev directory also contains loopback devices, such as /dev/loop0. A loopback
device is a gimmick allows an ordinary file to be accessed as if it were a block device. [57] This enables
mounting an entire filesystem within a single large file. See Example 13−6 and Example 13−5.

A few of the pseudo−devices in /dev have other specialized uses, such as /dev/null, /dev/zero and
/dev/urandom.

28.2. /proc

The /proc directory is actually a pseudo−filesystem. The files in the /proc directory mirror currently
running system and kernel processes and contain information and statistics about them.

bash$ cat /proc/devices
Character devices:
 1 mem
 2 pty
 3 ttyp
 4 ttyS
 5 cua
 7 vcs
 10 misc
 14 sound
 29 fb
 36 netlink
 128 ptm
 136 pts
 162 raw
 254 pcmcia

 Block devices:
 1 ramdisk

Chapter 28. /dev and /proc 275

 2 fd
 3 ide0
 9 md

bash$ cat /proc/interrupts
 CPU0
 0: 84505 XT−PIC timer
 1: 3375 XT−PIC keyboard
 2: 0 XT−PIC cascade
 5: 1 XT−PIC soundblaster
 8: 1 XT−PIC rtc
 12: 4231 XT−PIC PS/2 Mouse
 14: 109373 XT−PIC ide0
 NMI: 0
 ERR: 0

bash$ cat /proc/partitions
major minor #blocks name rio rmerge rsect ruse wio wmerge wsect wuse running use aveq

 3 0 3007872 hda 4472 22260 114520 94240 3551 18703 50384 549710 0 111550 644030
 3 1 52416 hda1 27 395 844 960 4 2 14 180 0 800 1140
 3 2 1 hda2 0 0 0 0 0 0 0 0 0 0 0
 3 4 165280 hda4 10 0 20 210 0 0 0 0 0 210 210
 ...

bash$ cat /proc/loadavg
0.13 0.42 0.27 2/44 1119

Shell scripts may extract data from certain of the files in /proc. [58]

kernel_version=$(awk '{ print $3 }' /proc/version)

CPU=$(awk '/model name/ {print $4}' < /proc/cpuinfo)

if [$CPU = Pentium]
then
 run_some_commands
 ...
else
 run_different_commands
 ...
fi

The /proc directory contains subdirectories with unusual numerical names. Every one of these names maps
to the process ID of a currently running process. Within each of these subdirectories, there are a number of
files that hold useful information about the corresponding process. The stat and status files keep
running statistics on the process, the cmdline file holds the command−line arguments the process was
invoked with, and the exe file is a symbolic link to the complete path name of the invoking process. There
are a few more such files, but these seem to be the most interesting from a scripting standpoint.

Advanced Bash−Scripting Guide

Chapter 28. /dev and /proc 276

Example 28−1. Finding the process associated with a PID

#!/bin/bash
pid−identifier.sh: Gives complete path name to process associated with pid.

ARGNO=1 # Number of arguments the script expects.
E_WRONGARGS=65
E_BADPID=66
E_NOSUCHPROCESS=67
E_NOPERMISSION=68
PROCFILE=exe

if [$# −ne $ARGNO]
then
 echo "Usage: `basename $0` PID−number" >&2 # Error message >stderr.
 exit $E_WRONGARGS
fi

pidno=$(ps ax | grep $1 | awk '{ print $1 }' | grep $1)
Checks for pid in "ps" listing, field #1.
Then makes sure it is the actual process, not the process invoked by this script.
The last "grep $1" filters out this possibility.
if [−z "$pidno"] # If, after all the filtering, the result is a zero−length string,
then # no running process corresponds to the pid given.
 echo "No such process running."
 exit $E_NOSUCHPROCESS
fi

Alternatively:
if ! ps $1 > /dev/null 2>&1
then # no running process corresponds to the pid given.
echo "No such process running."
exit $E_NOSUCHPROCESS
fi

To simplify the entire process, use "pidof".

if [! −r "/proc/$1/$PROCFILE"] # Check for read permission.
then
 echo "Process $1 running, but..."
 echo "Can't get read permission on /proc/$1/$PROCFILE."
 exit $E_NOPERMISSION # Ordinary user can't access some files in /proc.
fi

The last two tests may be replaced by:
if ! kill −0 $1 > /dev/null 2>&1 # '0' is not a signal, but
 # this will test whether it is possible
 # to send a signal to the process.
then echo "PID doesn't exist or you're not its owner" >&2
exit $E_BADPID
fi

exe_file=$(ls −l /proc/$1 | grep "exe" | awk '{ print $11 }')
Or exe_file=$(ls −l /proc/$1/exe | awk '{print $11}')
#
/proc/pid−number/exe is a symbolic link
to the complete path name of the invoking process.

Advanced Bash−Scripting Guide

Chapter 28. /dev and /proc 277

if [−e "$exe_file"] # If /proc/pid−number/exe exists...
then # the corresponding process exists.
 echo "Process #$1 invoked by $exe_file."
else
 echo "No such process running."
fi

This elaborate script can *almost* be replaced by
ps ax | grep $1 | awk '{ print $5 }'
However, this will not work...
because the fifth field of 'ps' is argv[0] of the process,
not the executable file path.
#
However, either of the following would work.
find /proc/$1/exe −printf '%l\n'
lsof −aFn −p $1 −d txt | sed −ne 's/^n//p'

Additional commentary by Stephane Chazelas.

exit 0

Example 28−2. On−line connect status

#!/bin/bash

PROCNAME=pppd # ppp daemon
PROCFILENAME=status # Where to look.
NOTCONNECTED=65
INTERVAL=2 # Update every 2 seconds.

pidno=$(ps ax | grep −v "ps ax" | grep −v grep | grep $PROCNAME | awk '{ print $1 }')
Finding the process number of 'pppd', the 'ppp daemon'.
Have to filter out the process lines generated by the search itself.
#
However, as Oleg Philon points out,
#+ this could have been considerably simplified by using "pidof".
pidno=$(pidof $PROCNAME)
#
Moral of the story:
#+ When a command sequence gets too complex, look for a shortcut.

if [−z "$pidno"] # If no pid, then process is not running.
then
 echo "Not connected."
 exit $NOTCONNECTED
else
 echo "Connected."; echo
fi

while [true] # Endless loop, script can be improved here.
do

 if [! −e "/proc/$pidno/$PROCFILENAME"]
 # While process running, then "status" file exists.
 then
 echo "Disconnected."
 exit $NOTCONNECTED
 fi

Advanced Bash−Scripting Guide

Chapter 28. /dev and /proc 278

netstat −s | grep "packets received" # Get some connect statistics.
netstat −s | grep "packets delivered"

 sleep $INTERVAL
 echo; echo

done

exit 0

As it stands, this script must be terminated with a Control−C.

Exercises for the reader:
Improve the script so it exits on a "q" keystroke.
Make the script more user−friendly in other ways.

In general, it is dangerous to write to the files in /proc,
as this can corrupt the filesystem or crash the machine.

Advanced Bash−Scripting Guide

Chapter 28. /dev and /proc 279

Chapter 29. Of Zeros and Nulls

/dev/zero and /dev/null

Uses of /dev/null

Think of /dev/null as a "black hole". It is the nearest equivalent to a write−only file. Everything
written to it disappears forever. Attempts to read or output from it result in nothing. Nevertheless,
/dev/null can be quite useful from both the command line and in scripts.

Suppressing stdout or stderr (from Example 12−2):

rm $badname 2>/dev/null
So error messages [stderr] deep−sixed.

Deleting contents of a file, but preserving the file itself, with all attendant permissions (from Example
2−1 and Example 2−2):

cat /dev/null > /var/log/messages
: > /var/log/messages has same effect, but does not spawn a new process.

cat /dev/null > /var/log/wtmp

Automatically emptying the contents of a logfile (especially good for dealing with those nasty
"cookies" sent by Web commercial sites):

Example 29−1. Hiding the cookie jar

if [−f ~/.netscape/cookies] # Remove, if exists.
then
 rm −f ~/.netscape/cookies
fi

ln −s /dev/null ~/.netscape/cookies
All cookies now get sent to a black hole, rather than saved to disk.

Uses of /dev/zero

Like /dev/null, /dev/zero is a pseudo file, but it actually contains nulls (numerical zeros, not
the ASCII kind). Output written to it disappears, and it is fairly difficult to actually read the nulls in
/dev/zero , though it can be done with od or a hex editor. The chief use for /dev/zero is in
creating an initialized dummy file of specified length intended as a temporary swap file.

Example 29−2. Setting up a swapfile using /dev/zero

#!/bin/bash

Creating a swapfile.
This script must be run as root.

ROOT_UID=0 # Root has $UID 0.

Chapter 29. Of Zeros and Nulls 280

E_WRONG_USER=65 # Not root?

FILE=/swap
BLOCKSIZE=1024
MINBLOCKS=40
SUCCESS=0

if ["$UID" −ne "$ROOT_UID"]
then
 echo; echo "You must be root to run this script."; echo
 exit $E_WRONG_USER
fi

if [−n "$1"]
then
 blocks=$1
else
 blocks=$MINBLOCKS # Set to default of 40 blocks
fi # if nothing specified on command line.

if ["$blocks" −lt $MINBLOCKS]
then
 blocks=$MINBLOCKS # Must be at least 40 blocks long.
fi

echo "Creating swap file of size $blocks blocks (KB)."
dd if=/dev/zero of=$FILE bs=$BLOCKSIZE count=$blocks # Zero out file.

mkswap $FILE $blocks # Designate it a swap file.
swapon $FILE # Activate swap file.

echo "Swap file created and activated."

exit $SUCCESS

Another application of /dev/zero is to "zero out" a file of a designated size for a special purpose,
such as mounting a filesystem on a loopback device (see Example 13−6) or securely deleting a file
(see Example 12−34).

Example 29−3. Creating a ramdisk

#!/bin/bash
ramdisk.sh

A "ramdisk" is a segment of system RAM memory
#+ that acts as if it were a filesystem.
Its advantage is very fast access (read/write time).
Disadvantages: volatility, loss of data on reboot or powerdown.
less RAM available to system.
#
What good is a ramdisk?
Keeping a large dataset, such as a table or dictionary on ramdisk
#+ speeds up data lookup, since memory access is much faster than disk access.

E_NON_ROOT_USER=70 # Must run as root.
ROOTUSER_NAME=root

Advanced Bash−Scripting Guide

Chapter 29. Of Zeros and Nulls 281

MOUNTPT=/mnt/ramdisk
SIZE=2000 # 2K blocks (change as appropriate)
BLOCKSIZE=1024 # 1K (1024 byte) block size
DEVICE=/dev/ram0 # First ram device

username=`id −nu`
if ["$username" != "$ROOTUSER_NAME"]
then
 echo "Must be root to run \"`basename $0`\"."
 exit $E_NON_ROOT_USER
fi

if [! −d "$MOUNTPT"] # Test whether mount point already there,
then #+ so no error if this script is run
 mkdir $MOUNTPT #+ multiple times.
fi

dd if=/dev/zero of=$DEVICE count=$SIZE bs=$BLOCKSIZE # Zero out RAM device.
mke2fs $DEVICE # Create an ext2 filesystem on it.
mount $DEVICE $MOUNTPT # Mount it.
chmod 777 $MOUNTPT # So ordinary user can access ramdisk.
 # However, must be root to unmount it.

echo "\"$MOUNTPT\" now available for use."
The ramdisk is now accessible for storing files, even by an ordinary user.

Caution, the ramdisk is volatile, and its contents will disappear
#+ on reboot or power loss.
Copy anything you want saved to a regular directory.

After reboot, run this script again to set up ramdisk.
Remounting /mnt/ramdisk without the other steps will not work.

exit 0

Advanced Bash−Scripting Guide

Chapter 29. Of Zeros and Nulls 282

Chapter 30. Debugging
The Bash shell contains no debugger, nor even any debugging−specific commands or constructs. Syntax
errors or outright typos in the script generate cryptic error messages that are often of no help in debugging a
non−functional script.

Example 30−1. A buggy script

#!/bin/bash
ex74.sh

This is a buggy script.

a=37

if [$a −gt 27]
then
 echo $a
fi

exit 0

Output from script:

./ex74.sh: [37: command not found

What's wrong with the above script (hint: after the if)?

What if the script executes, but does not work as expected? This is the all too familiar logic error.

Example 30−2. test24, another buggy script

#!/bin/bash

This is supposed to delete all filenames in current directory
#+ containing embedded spaces.
It doesn't work. Why not?

badname=`ls | grep ' '`

echo "$badname"

rm "$badname"

exit 0

Try to find out what's wrong with Example 30−2 by uncommenting the echo "$badname" line. Echo
statements are useful for seeing whether what you expect is actually what you get.

In this particular case, rm "$badname" will not give the desired results because $badname should not be
quoted. Placing it in quotes ensures that rm has only one argument (it will match only one filename). A

Chapter 30. Debugging 283

partial fix is to remove to quotes from $badname and to reset $IFS to contain only a newline,
IFS=$'\n'. However, there are simpler ways of going about it.

Correct methods of deleting filenames containing spaces.
rm *\ *
rm *" "*
rm *' '*
Thank you. S.C.

Summarizing the symptoms of a buggy script,

It bombs with an error message syntax error, or 1.
It runs, but does not work as expected (logic error) 2.
It runs, works as expected, but has nasty side effects (logic bomb). 3.

Tools for debugging non−working scripts include

echo statements at critical points in the script to trace the variables, and otherwise give a snapshot of
what is going on.

1.

using the tee filter to check processes or data flows at critical points. 2.
setting option flags −n −v −x3.

sh −n scriptname checks for syntax errors without actually running the script. This is the
equivalent of inserting set −n or set −o noexec into the script. Note that certain types of
syntax errors can slip past this check.

sh −v scriptname echoes each command before executing it. This is the equivalent of inserting
set −v or set −o verbose in the script.

The −n and −v flags work well together. sh −nv scriptname gives a verbose syntax check.

sh −x scriptname echoes the result each command, but in an abbreviated manner. This is the
equivalent of inserting set −x or set −o xtrace in the script.

Inserting set −u or set −o nounset in the script runs it, but gives an unbound variable error
message at each attempt to use an undeclared variable.

Using an "assert" function to test a variable or condition at critical points in a script. (This is an idea
borrowed from C.)

Example 30−3. Testing a condition with an "assert"

#!/bin/bash
assert.sh

assert () # If condition false,
{ #+ exit from script with error message.
 E_PARAM_ERR=98
 E_ASSERT_FAILED=99

 if [−z "$2"] # Not enough parameters passed.
 then
 return $E_PARAM_ERR # No damage done.

4.

Advanced Bash−Scripting Guide

Chapter 30. Debugging 284

 fi

 lineno=$2

 if [! $1]
 then
 echo "Assertion failed: \"$1\""
 echo "File $0, line $lineno"
 exit $E_ASSERT_FAILED
 # else
 # return
 # and continue executing script.
 fi
}

a=5
b=4
condition="$a −lt $b" # Error message and exit from script.
 # Try setting "condition" to something else,
 #+ and see what happens.

assert "$condition" $LINENO
The remainder of the script executes only if the "assert" does not fail.

Some commands.
...
Some more commands.

exit 0

trapping at exit. 5.

The exit command in a script triggers a signal 0, terminating the process, that is, the script itself.
[59] It is often useful to trap the exit, forcing a "printout" of variables, for example. The trap must be
the first command in the script.

Trapping signals

trap

Specifies an action on receipt of a signal; also useful for debugging.

A signal is simply a message sent to a process,
either by the kernel or another process, telling it
to take some specified action (usually to
terminate). For example, hitting a Control−C,
sends a user interrupt, an INT signal, to a
running program.

trap '' 2
Ignore interrupt 2 (Control−C), with no action specified.

trap 'echo "Control−C disabled."' 2
Message when Control−C pressed.

Advanced Bash−Scripting Guide

Chapter 30. Debugging 285

Example 30−4. Trapping at exit

#!/bin/bash

trap 'echo Variable Listing −−− a = $a b = $b' EXIT
EXIT is the name of the signal generated upon exit from a script.

a=39

b=36

exit 0
Note that commenting out the 'exit' command makes no difference,
since the script exits in any case after running out of commands.

Example 30−5. Cleaning up after Control−C

#!/bin/bash
logon.sh: A quick 'n dirty script to check whether you are on−line yet.

TRUE=1
LOGFILE=/var/log/messages
Note that $LOGFILE must be readable (chmod 644 /var/log/messages).
TEMPFILE=temp.$$
Create a "unique" temp file name, using process id of the script.
KEYWORD=address
At logon, the line "remote IP address xxx.xxx.xxx.xxx"
appended to /var/log/messages.
ONLINE=22
USER_INTERRUPT=13

trap 'rm −f $TEMPFILE; exit $USER_INTERRUPT' TERM INT
Cleans up the temp file if script interrupted by control−c.

echo

while [$TRUE] #Endless loop.
do
 tail −1 $LOGFILE> $TEMPFILE
 # Saves last line of system log file as temp file.
 search=`grep $KEYWORD $TEMPFILE`
 # Checks for presence of the "IP address" phrase,
 # indicating a successful logon.

 if [! −z "$search"] # Quotes necessary because of possible spaces.
 then
 echo "On−line"
 rm −f $TEMPFILE # Clean up temp file.
 exit $ONLINE
 else
 echo −n "." # −n option to echo suppresses newline,
 # so you get continuous rows of dots.
 fi

 sleep 1
done

Note: if you change the KEYWORD variable to "Exit",
this script can be used while on−line to check for an unexpected logoff.

Advanced Bash−Scripting Guide

Chapter 30. Debugging 286

Exercise: Change the script, as per the above note,
and prettify it.

exit 0

Nick Drage suggests an alternate method:

while true
 do ifconfig ppp0 | grep UP 1> /dev/null && echo "connected" && exit 0
 echo −n "." # Prints dots (.....) until connected.
 sleep 2
done

Problem: Hitting Control−C to terminate this process may be insufficient.
(Dots may keep on echoing.)
Exercise: Fix this.

Stephane Chazelas has yet another alternative:

CHECK_INTERVAL=1

while ! tail −1 "$LOGFILE" | grep −q "$KEYWORD"
do echo −n .
 sleep $CHECK_INTERVAL
done
echo "On−line"

Exercise: Consider the strengths and weaknesses
of each of these approaches.

The DEBUG argument to trap causes a specified action to execute after every command in
a script. This permits tracing variables, for example.

Example 30−6. Tracing a variable

#!/bin/bash

trap 'echo "VARIABLE−TRACE> \$variable = \"$variable\""' DEBUG
Echoes the value of $variable after every command.

variable=29

echo "Just initialized \"\$variable\" to $variable."

let "variable *= 3"
echo "Just multiplied \"\$variable\" by 3."

The "trap 'commands' DEBUG" construct would be more useful
in the context of a complex script,
where placing multiple "echo $variable" statements might be
clumsy and time−consuming.

Thanks, Stephane Chazelas for the pointer.

exit 0

Advanced Bash−Scripting Guide

Chapter 30. Debugging 287

trap '' SIGNAL (two adjacent apostrophes) disables
SIGNAL for the remainder of the script. trap
SIGNAL restores the functioning of SIGNAL once more.
This is useful to protect a critical portion of a script from an
undesirable interrupt.

 trap '' 2 # Signal 2 is Control−C, now disabled.
 command
 command
 command
 trap 2 # Reenables Control−C

Advanced Bash−Scripting Guide

Chapter 30. Debugging 288

Chapter 31. Options

Options are settings that change shell and/or script behavior.

The set command enables options within a script. At the point in the script where you want the options to
take effect, use set −o option−name or, in short form, set −option−abbrev. These two forms are equivalent.

 #!/bin/bash

 set −o verbose
 # Echoes all commands before executing.

 #!/bin/bash

 set −v
 # Exact same effect as above.

To disable an option within a script, use set +o
option−name or set +option−abbrev.

 #!/bin/bash

 set −o verbose
 # Command echoing on.
 command
 ...
 command

 set +o verbose
 # Command echoing off.
 command
 # Not echoed.

 set −v
 # Command echoing on.
 command
 ...
 command

 set +v
 # Command echoing off.
 command

 exit 0

An alternate method of enabling options in a script is to specify them immediately following the #! script
header.

 #!/bin/bash −x
 #

Chapter 31. Options 289

 # Body of script follows.

It is also possible to enable script options from the command line. Some options that will not work with
set are available this way. Among these are −i, force script to run interactive.

bash −v script−name

bash −o verbose script−name

The following is a listing of some useful options. They may be specified in either abbreviated form or by
complete name.

Table 31−1. bash options

Abbreviation Name Effect

−C noclobber Prevent overwriting of files by
redirection (may be overridden by >|)

−D (none) List double−quoted strings prefixed
by $, but do not execute commands in
script

−a allexport Export all defined variables

−b notify Notify when jobs running in
background terminate (not of much
use in a script)

−c ... (none) Read commands from ...

−f noglob Filename expansion (globbing)
disabled

−i interactive Script runs in interactive mode

−p privileged Script runs as "suid" (caution!)

−r restricted Script runs in restricted mode (see
Chapter 21).

−u nounset Attempt to use undefined variable
outputs error message, and forces an
exit

−v verbose Print each command to
stdout before executing it

−x xtrace Similar to −v, but expands commands

−e errexit Abort script at first error (when a
command exits with non−zero status)

−n noexec Read commands in script, but do not
execute them (syntax check)

−s stdin Read commands from stdin

Advanced Bash−Scripting Guide

Chapter 31. Options 290

−t (none) Exit after first command

− (none) End of options flag. All other
arguments are positional parameters.

−− (none) Unset positional parameters. If
arguments given (−− arg1 arg2),
positional parameters set to arguments.

Advanced Bash−Scripting Guide

Chapter 31. Options 291

Chapter 32. Gotchas

Turandot: Gli enigmi sono tre, la morte una!

Caleph: No, no! Gli enigmi sono tre, una la vita!
Puccini

Assigning reserved words or characters to variable names.

case=value0 # Causes problems.
23skidoo=value1 # Also problems.
Variable names starting with a digit are reserved by the shell.
Try _23skidoo=value1. Starting variables with an underscore is o.k.

However... using just the underscore will not work.
_=25
echo $_ # $_ is a special variable set to last arg of last command.

xyz((!*=value2 # Causes severe problems.

Using a hyphen or other reserved characters in a variable name.

var−1=23
Use 'var_1' instead.

Using the same name for a variable and a function. This can make a script difficult to understand.

do_something ()
{
 echo "This function does something with \"$1\"."
}

do_something=do_something

do_something do_something

All this is legal, but highly confusing.

Using whitespace inappropriately (in contrast to other programming languages, Bash can be quite finicky
about whitespace).

var1 = 23 # 'var1=23' is correct.
On line above, Bash attempts to execute command "var1"
with the arguments "=" and "23".

let c = $a − $b # 'let c=$a−$b' or 'let "c = $a − $b"' are correct.

if [$a −le 5] # if [$a −le 5] is correct.
if ["$a" −le 5] is even better.
[[$a −le 5]] also works.

Assuming uninitialized variables (variables before a value is assigned to them) are "zeroed out". An
uninitialized variable has a value of "null", not zero.

Chapter 32. Gotchas 292

Mixing up = and −eq in a test. Remember, = is for comparing literal variables and −eq for integers.

if ["$a" = 273] # Is $a an integer or string?
if ["$a" −eq 273] # If $a is an integer.

Sometimes you can mix up −eq and = without adverse consequences.
However...

a=273.0 # Not an integer.

if ["$a" = 273]
then
 echo "Comparison works."
else
 echo "Comparison does not work."
fi # Comparison does not work.

Same with a=" 273" and a="0273".

Likewise, problems trying to use "−eq" with non−integer values.

if ["$a" −eq 273.0]
then
 echo "a = $a'
fi # Aborts with an error message.
test.sh: [: 273.0: integer expression expected

Sometimes variables within "test" brackets ([]) need to be quoted (double quotes). Failure to do so may cause
unexpected behavior. See Example 7−5, Example 16−2, and Example 9−5.

Commands issued from a script may fail to execute because the script owner lacks execute permission for
them. If a user cannot invoke a command from the command line, then putting it into a script will likewise
fail. Try changing the attributes of the command in question, perhaps even setting the suid bit (as root, of
course).

Attempting to use − as a redirection operator (which it is not) will usually result in an unpleasant surprise.

command1 2> − | command2 # Trying to redirect error output of command1 into a pipe...
...will not work.

command1 2>& − | command2 # Also futile.

Thanks, S.C.

Using Bash version 2+ functionality may cause a bailout with error messages. Older Linux machines may
have version 1.XX of Bash as the default installation.

#!/bin/bash

minimum_version=2
Since Chet Ramey is constantly adding features to Bash,
you may set $minimum_version to 2.XX, or whatever is appropriate.
E_BAD_VERSION=80

if ["$BASH_VERSION" \< "$minimum_version"]
then

Advanced Bash−Scripting Guide

Chapter 32. Gotchas 293

 echo "This script works only with Bash, version $minimum or greater."
 echo "Upgrade strongly recommended."
 exit $E_BAD_VERSION
fi

...

Using Bash−specific functionality in a Bourne shell script (#!/bin/sh) on a non−Linux machine may
cause unexpected behavior. A Linux system usually aliases sh to bash, but this does not necessarily hold true
for a generic UNIX machine.

A script with DOS−type newlines (\r\n) will fail to execute, since #!/bin/bash\r\n is not recognized,
not the same as the expected #!/bin/bash\n. The fix is to convert the script to UNIX−style newlines.

A shell script headed by #!/bin/sh may not run in full Bash−compatibility mode. Some Bash−specific
functions might be disabled. Scripts that need complete access to all the Bash−specific extensions should start
with #!/bin/bash.

A script may not export variables back to its parent process, the shell, or to the environment. Just as we
learned in biology, a child process can inherit from a parent, but not vice versa.

WHATEVER=/home/bozo
export WHATEVER
exit 0

bash$ echo $WHATEVER

bash$

Sure enough, back at the command prompt, $WHATEVER remains unset.

Setting and manipulating variables in a subshell, then attempting to use those same variables outside the
scope of the subshell will result an unpleasant surprise.

Example 32−1. Subshell Pitfalls

#!/bin/bash
Pitfalls of variables in a subshell.

outer_variable=outer
echo
echo "outer_variable = $outer_variable"
echo

(
Begin subshell

echo "outer_variable inside subshell = $outer_variable"
inner_variable=inner # Set
echo "inner_variable inside subshell = $inner_variable"
outer_variable=inner # Will value change globally?
echo "outer_variable inside subshell = $outer_variable"

End subshell
)

echo

Advanced Bash−Scripting Guide

Chapter 32. Gotchas 294

echo "inner_variable outside subshell = $inner_variable" # Unset.
echo "outer_variable outside subshell = $outer_variable" # Unchanged.
echo

exit 0

Using "suid" commands in scripts is risky, as it may compromise system security. [60]

Using shell scripts for CGI programming may be problematic. Shell script variables are not "typesafe", and
this can cause undesirable behavior as far as CGI is concerned. Moreover, it is difficult to
"cracker−proof" shell scripts.

Danger is near thee −−

Beware, beware, beware, beware.

Many brave hearts are asleep in the deep.

So beware −−

Beware.
A.J. Lamb and H.W. Petrie

Advanced Bash−Scripting Guide

Chapter 32. Gotchas 295

Chapter 33. Scripting With Style
Get into the habit of writing shell scripts in a structured and systematic manner. Even "on−the−fly" and
"written on the back of an envelope" scripts will benefit if you take a few minutes to plan and organize your
thoughts before sitting down and coding.

Herewith are a few stylistic guidelines. This is not intended as an Official Shell Scripting Stylesheet.

33.1. Unofficial Shell Scripting Stylesheet

Comment your code. This makes it easier for others to understand (and appreciate), and easier for
you to maintain.

•

PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}"
It made perfect sense when you wrote it last year, but now it's a complete mystery.
(From Antek Sawicki's "pw.sh" script.)

Add descriptive headers to your scripts and functions.

#!/bin/bash

#**#
xyz.sh
written by Bozo Bozeman
July 05, 2001

Clean up project files.
#**#

BADDIR=65 # No such directory.
projectdir=/home/bozo/projects # Directory to clean up.

#−−−#
cleanup_pfiles ()
Removes all files in designated directory.
Parameter: $target_directory
Returns: 0 on success, $BADDIR if something went wrong.
#−−−#
cleanup_pfiles ()
{
 if [! −d "$1"] # Test if target directory exists.
 then
 echo "$1 is not a directory."
 return $BADDIR
 fi

 rm −f "$1"/*
 return 0 # Success.
}

cleanup_pfiles $projectdir

exit 0

Be sure to put the #!/bin/bash at the beginning of the first line of the script, preceding any comment
headers.

Chapter 33. Scripting With Style 296

Avoid using "magic numbers", [61] that is, "hard−wired" literal constants. Use meaningful variable
names instead. This makes the script easier to understand and permits making changes and updates
without breaking the application.

•

if [−f /var/log/messages]
then
 ...
fi
A year later, you decide to change the script to check /var/log/syslog.
It is now necessary to manually change the script, instance by instance,
and hope nothing breaks.

A better way:
LOGFILE=/var/log/messages # Only line that needs to be changed.
if [−f "$LOGFILE"]
then
 ...
fi

Choose descriptive names for variables and functions. •
fl=`ls −al $dirname` # Cryptic.
file_listing=`ls −al $dirname` # Better.

MAXVAL=10 # All caps used for a script constant.
while ["$index" −le "$MAXVAL"]
...

E_NOTFOUND=75 # Uppercase for an errorcode,
 # and name begins with "E_".
if [! −e "$filename"]
then
 echo "File $filename not found."
 exit $E_NOTFOUND
fi

MAIL_DIRECTORY=/var/spool/mail/bozo # Uppercase for an environmental variable.
export MAIL_DIRECTORY

GetAnswer () # Mixed case works well for a function.
{
 prompt=$1
 echo −n $prompt
 read answer
 return $answer
}

GetAnswer "What is your favorite number? "
favorite_number=$?
echo $favorite_number

_uservariable=23 # Permissable, but not recommended.
It's better for user−defined variables not to start with an underscore.
Leave that for system variables.

Use exit codes in a systematic and meaningful way. •
E_WRONG_ARGS=65
...
...
exit $E_WRONG_ARGS

Advanced Bash−Scripting Guide

Chapter 33. Scripting With Style 297

See also Appendix C.
Break complex scripts into simpler modules. Use functions where appropriate. See Example 35−3. •
Don't use a complex construct where a simpler one will do. •
COMMAND
if [$? −eq 0]
...
Redundant and non−intuitive.

if COMMAND
...
More concise (if perhaps not quite as legible).

Advanced Bash−Scripting Guide

Chapter 33. Scripting With Style 298

Chapter 34. Miscellany

Nobody really knows what the Bourne shell's
grammar is. Even examination of the source code is
little help.

Tom Duff

34.1. Interactive and non−interactive shells and scripts

An interactive shell reads commands from user input on a tty. Among other things, such a shell reads
startup files on activation, displays a prompt, and enables job control by default. The user can interact with
the shell.

A shell running a script is always a non−interactive shell. All the same, the script can still access its tty. It is
even possible to emulate an interactive shell in a script.

#!/bin/bash
MY_PROMPT='$ '
while :
do
 echo −n "$MY_PROMPT"
 read line
 eval "$line"
 done

exit 0

This example script, and much of the above explanation supplied by
Stephane Chazelas (thanks again).

Let us consider an interactive script to be one that requires input from the user, usually with read statements
(see Example 11−2). "Real life" is actually a bit messier than that. For now, assume an interactive script is
bound to a tty, a script that a user has invoked from the console or an xterm.

Init and startup scripts are necessarily non−interactive, since they must run without human intervention.
Many administrative and system maintenance scripts are likewise non−interactive. Unvarying repetitive tasks
cry out for automation by non−interactive scripts.

Non−interactive scripts can run in the background, but interactive ones hang, waiting for input that never
comes. Handle that difficulty by having an expect script or embedded here document feed input to an
interactive script running as a background job. In the simplest case, redirect a file to supply input to a
read statement (read variable <file). These particular workarounds make possible general purpose scripts
that run in either interactive or non−interactive modes.

If a script needs to test whether it is running in an interactive shell, it is simply a matter of finding whether
the prompt variable, $PS1 is set. (If the user is being prompted for input, then the script needs to display a
prompt.)

if [−z $PS1] # no prompt?
then

Chapter 34. Miscellany 299

 # non−interactive
 ...
else
 # interactive
 ...
fi

Alternatively, the script can test for the presence of option "i" in the $− flag.
case $− in
i) # interactive shell
;;
*) # non−interactive shell
;;
(Thanks to "UNIX F.A.Q.", 1993)

Scripts may be forced to run in interactive mode with the
−i option or with a #!/bin/bash −i header. Be aware that
this can cause erratic script behavior or show error
messages even when no error is present.

34.2. Shell Wrappers

A "wrapper" is a shell script that embeds a system command or utility, that saves a set of parameters passed
to to that command. Wrapping a script around a complex command line simplifies invoking it. This is
expecially useful with sed and awk.

A sed or awk script would normally be invoked from the command line by a sed −e 'commands' or
awk 'commands'. Embedding such a script in a Bash script permits calling it more simply, and makes it
"reusable". This also enables combining the functionality of sed and awk, for example piping the output of a
set of sed commands to awk. As a saved executable file, you can then repeatedly invoke it in its original form
or modified, without the inconvenience of retyping it on the command line.

Example 34−1. shell wrapper

#!/bin/bash

This is a simple script that removes blank lines from a file.
No argument checking.

Same as
sed −e '/^$/d' filename
invoked from the command line.

sed −e /^$/d "$1"
The '−e' means an "editing" command follows (optional here).
'^' is the beginning of line, '$' is the end.
This match lines with nothing between the beginning and the end,
blank lines.
The 'd' is the delete command.

Quoting the command−line arg permits
whitespace and special characters in the filename.

Advanced Bash−Scripting Guide

34.2. Shell Wrappers 300

exit 0

Example 34−2. A slightly more complex shell wrapper

#!/bin/bash

"subst", a script that substitutes one pattern for
another in a file,
i.e., "subst Smith Jones letter.txt".

ARGS=3
E_BADARGS=65 # Wrong number of arguments passed to script.

if [$# −ne "$ARGS"]
Test number of arguments to script (always a good idea).
then
 echo "Usage: `basename $0` old−pattern new−pattern filename"
 exit $E_BADARGS
fi

old_pattern=$1
new_pattern=$2

if [−f "$3"]
then
 file_name=$3
else
 echo "File \"$3\" does not exist."
 exit $E_BADARGS
fi

Here is where the heavy work gets done.
sed −e "s/$old_pattern/$new_pattern/g" $file_name
's' is, of course, the substitute command in sed,
and /pattern/ invokes address matching.
The "g", or global flag causes substitution for *every*
occurence of $old_pattern on each line, not just the first.
Read the literature on 'sed' for a more in−depth explanation.

exit 0 # Successful invocation of the script returns 0.

Example 34−3. A shell wrapper around an awk script

#!/bin/bash

Adds up a specified column (of numbers) in the target file.

ARGS=2
E_WRONGARGS=65

if [$# −ne "$ARGS"] # Check for proper no. of command line args.
then
 echo "Usage: `basename $0` filename column−number"
 exit $E_WRONGARGS
fi

filename=$1
column_number=$2

Advanced Bash−Scripting Guide

34.2. Shell Wrappers 301

Passing shell variables to the awk part of the script is a bit tricky.
See the awk documentation for more details.

A multi−line awk script is invoked by awk ' '

Begin awk script.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
awk '

{ total += $'"${column_number}"'
}
END {
 print total
}

' "$filename"
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
End awk script.

It may not be safe to pass shell variables to an embedded awk script,
so Stephane Chazelas proposes the following alternative:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
awk −v column_number="$column_number" '
{ total += $column_number
}
END {
print total
}' "$filename"
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

exit 0

For those scripts needing a single do−it−all tool, a Swiss army knife, there is Perl. Perl combines the
capabilities of sed and awk, and throws in a large subset of C, to boot. It is modular and contains support for
everything ranging from object−oriented programming up to and including the kitchen sink. Short Perl scripts
lend themselves to embedding in shell scripts, and there may even be some substance to the claim that Perl
can totally replace shell scripting (though the author of this document remains skeptical).

Example 34−4. Perl embedded in a Bash script

#!/bin/bash

Shell commands may precede the Perl script.
echo "This precedes the embedded Perl script within \"$0\"."
echo "==="

perl −e 'print "This is an embedded Perl script.\n";'
Like sed, Perl also uses the "−e" option.

echo "==="
echo "However, the script may also contain shell and system commands."

exit 0

Advanced Bash−Scripting Guide

34.2. Shell Wrappers 302

It is even possible to combine a Bash script and Perl script within the same file. Depending on how the script
is invoked, either the Bash part or the Perl part will execute.

Example 34−5. Bash and Perl scripts combined

#!/bin/bash
bashandperl.sh

echo "Greetings from the Bash part of the script."
More Bash commands may follow here.

exit 0
End of Bash part of the script.

===

#!/usr/bin/perl
This part of the script must be invoked with −x option.

print "Greetings from the Perl part of the script.\n";
More Perl commands may follow here.

End of Perl part of the script.

bash$ bash bashandperl.sh
Greetings from the Bash part of the script.

bash$ perl −x bashandperl.sh
Greetings from the Perl part of the script.

34.3. Tests and Comparisons: Alternatives

For tests, the [[]] construct may be more appropriate than []. Likewise, arithmetic comparisons might
benefit from the (()) construct.

a=8

All of the comparisons below are equivalent.
test "$a" −lt 16 && echo "yes, $a < 16" # "and list"
/bin/test "$a" −lt 16 && echo "yes, $a < 16"
["$a" −lt 16] && echo "yes, $a < 16"
[[$a −lt 16]] && echo "yes, $a < 16" # Quoting variables within
((a < 16)) && echo "yes, $a < 16" # [[]] and (()) not necessary.

city="New York"
Again, all of the comparisons below are equivalent.
test "$city" \< Paris && echo "Yes, Paris is greater than $city" # Greater ASCII order.
/bin/test "$city" \< Paris && echo "Yes, Paris is greater than $city"
["$city" \< Paris] && echo "Yes, Paris is greater than $city"
[[$city < Paris]] && echo "Yes, Paris is greater than $city" # Need not quote $city.

Thank you, S.C.

Advanced Bash−Scripting Guide

34.3. Tests and Comparisons: Alternatives 303

34.4. Optimizations

Most shell scripts are quick 'n dirty solutions to non−complex problems. As such, optimizing them for speed
is not much of an issue. Consider the case, though, where a script carries out an important task, does it well,
but runs too slowly. Rewriting it in a compiled language may not be a palatable option. The simplest fix
would be to rewrite the parts of the script that slow it down. Is it possible to apply principles of code
optimization even to a lowly shell script?

Check the loops in the script. Time consumed by repetitive operations adds up quickly. Use the time and
times tools to profile computation−intensive commands. Consider rewriting time−critical code sections in C,
or even in assembler.

Try to minimize file i/o. Bash is not particularly efficient at handling files, so consider using more
appropriate tools for this within the script, such as awk or Perl.

Try to write your scripts in a structured, coherent form, so they can be reorganized and tightened up as
necessary. Some of the optimization techniques applicable to high−level languages may work for scripts, but
others, such as loop unrolling, are mostly irrelevant. Above all, use common sense.

34.5. Assorted Tips

To keep a record of which user scripts have run during a particular sesssion or over a number of
sessions, add the following lines to each script you want to keep track of. This will keep a continuing
file record of the script names and invocation times.

•

Append (>>) following to end of each script tracked.

date>> $SAVE_FILE #Date and time.
echo $0>> $SAVE_FILE #Script name.
echo>> $SAVE_FILE #Blank line as separator.

Of course, SAVE_FILE defined and exported as environmental variable in ~/.bashrc
(something like ~/.scripts−run)

•
The >> operator appends lines to a file. What if you wish to prepend a line to an existing file, that is,
to paste it in at the beginning?

file=data.txt
title="***This is the title line of data text file***"

echo $title | cat − $file >$file.new
"cat −" concatenates stdout to $file.
End result is
#+ to write a new file with $title appended at *beginning*.

Of course, sed can also do this.

A shell script may act as an embedded command inside another shell script, a Tcl or wish script, or
even a Makefile. It can be invoked as as an external shell command in a C program using the
system() call, i.e., system("script_name");.

•

Advanced Bash−Scripting Guide

34.4. Optimizations 304

Put together files containing your favorite and most useful definitions and functions. As necessary,
"include" one or more of these "library files" in scripts with either the dot (.) or source command.

•

SCRIPT LIBRARY
−−−−−− −−−−−−−

Note:
No "#!" here.
No "live code" either.

Useful variable definitions

ROOT_UID=0 # Root has $UID 0.
E_NOTROOT=101 # Not root user error.
MAXRETVAL=256 # Maximum (positive) return value of a function.
SUCCESS=0
FAILURE=−1

Functions

Usage () # "Usage:" message.
{
 if [−z "$1"] # No arg passed.
 then
 msg=filename
 else
 msg=$@
 fi

 echo "Usage: `basename $0` "$msg""
}

Check_if_root () # Check if root running script.
{ # From "ex39.sh" example.
 if ["$UID" −ne "$ROOT_UID"]
 then
 echo "Must be root to run this script."
 exit $E_NOTROOT
 fi
}

CreateTempfileName () # Creates a "unique" temp filename.
{ # From "ex51.sh" example.
 prefix=temp
 suffix=`eval date +%s`
 Tempfilename=$prefix.$suffix
}

isalpha2 () # Tests whether *entire string* is alphabetic.
{ # From "isalpha.sh" example.
 [$# −eq 1] || return $FAILURE

 case $1 in
 [!a−zA−Z]|"") return $FAILURE;;
 *) return $SUCCESS;;

Advanced Bash−Scripting Guide

34.4. Optimizations 305

 esac # Thanks, S.C.
}

abs () # Absolute value.
{ # Caution: Max return value = 256.
 E_ARGERR=−999999

 if [−z "$1"] # Need arg passed.
 then
 return $E_ARGERR # Obvious error value returned.
 fi

 if ["$1" −ge 0] # If non−negative,
 then #
 absval=$1 # stays as−is.
 else # Otherwise,
 let "absval = ((0 − $1))" # change sign.
 fi

 return $absval
}

Use special−purpose comment headers to increase clarity and legibility in scripts. •

Caution.
rm −rf *.zzy ## The "−rf" options to "rm" are very dangerous,
 ##+ especially with wildcards.

#+ Line continuation.
This is line 1
#+ of a multi−line comment,
#+ and this is the final line.

#* Note.

#o List item.

#> Another point of view.
while ["$var1" != "end"] #> while test "$var1" != "end"

Using the $? exit status variable, a script may test if a parameter contains only digits, so it can be
treated as an integer.

•

#!/bin/bash

SUCCESS=0
E_BADINPUT=65

test "$1" −ne 0 −o "$1" −eq 0 2>/dev/null
An integer is either equal to 0 or not equal to 0.
2>/dev/null suppresses error message.

if [$? −ne "$SUCCESS"]
then
 echo "Usage: `basename $0` integer−input"
 exit $E_BADINPUT
fi

let "sum = $1 + 25" # Would give error if $1 not integer.
echo "Sum = $sum"

Any variable, not just a command line parameter, can be tested this way.

Advanced Bash−Scripting Guide

34.4. Optimizations 306

exit 0

Using the double parentheses construct, it is possible to use C−like syntax for setting and
incrementing variables and in for and while loops. See Example 10−11 and Example 10−16.

•

The run−parts command is handy for running a set of command scripts in sequence, particularly in
combination with cron or at.

•

It would be nice to be able to invoke X−Windows widgets from a shell script. There happen to exist
several packages that purport to do so, namely Xscript, Xmenu, and widtools. The first two of these
no longer seem to be maintained. Fortunately, it is still possible to obtain widtools here.

The widtools (widget tools) package requires the
XForms library to be installed. Additionally, the
Makefile needs some judicious editing before the
package will build on a typical Linux system.
Finally, three of the six widgets offered do not
work (and, in fact, segfault).

For more effective scripting with widgets, try Tk or wish (Tcl derivatives), PerlTk (Perl with Tk
extensions), tksh (ksh with Tk extensions), XForms4Perl (Perl with XForms extensions),
Gtk−Perl (Perl with Gtk extensions), or PyQt (Python with Qt extensions).

•

34.6. Oddities

Can a script recursively call itself? Indeed.

Example 34−6. A script that recursively calls itself

#!/bin/bash
recurse.sh

Can a script recursively call itself?
Yes, but this is of little or no practical use
#+ except perhaps as a "proof of concept".

RANGE=10
MAXVAL=9

i=$RANDOM
let "i %= $RANGE" # Generate a random number between 0 and $MAXVAL.

if ["$i" −lt "$MAXVAL"]
then
 echo "i = $i"
 ./$0 # Script recursively spawns a new instance of itself.
fi # Each child script does the same, until
 #+ a generated $i equals $MAXVAL.

Using a "while" loop instead of an "if/then" test causes problems.
Exercise for the reader: Explain why.

exit 0

Advanced Bash−Scripting Guide

34.6. Oddities 307

http://www.batse.msfc.nasa.gov/~mallozzi/home/software/xforms/src/widtools-2.0.tgz

Too many levels of recursion can exhaust the script's
stack space, causing a segfault.

34.7. Portability Issues

This book deals specifically with Bash scripting on a GNU/Linux system. All the same, users of sh and
ksh will find much of value here.

As it happens, many of the various shells and scripting languages seem to be converging toward the POSIX
1003.2 standard. Invoking Bash with the −−posix option or inserting a set −o posix at the head of a script
causes Bash to conform very closely to this standard. Even lacking this measure, most Bash scripts will run
as−is under ksh, and vice−versa, since Chet Ramey has been busily porting ksh features to the latest versions
of Bash.

On a commercial UNIX machine, scripts using GNU−specific features of standard commands may not work.
This has become less of a problem in the last few years, as the GNU utilities have pretty much displaced their
proprietary counterparts even on "big−iron" UNIX. Caldera's recent release of the source to many of the
original UNIX utilities will only accelerate the trend.

34.8. Shell Scripting Under Windows

Even users running that other OS can run UNIX−like shell scripts, and therefore benefit from many of the
lessons of this book. The Cygwin package from Cygnus and the MKS utilities from Mortice Kern Associates
add shell scripting capabilities to Windows.

Advanced Bash−Scripting Guide

34.7. Portability Issues 308

http://sourceware.cygnus.com/cygwin/
http://www.mkssoftware.com/

Chapter 35. Bash, version 2

The current version of Bash, the one you have running on your machine, is actually version 2.XX.

bash$ echo $BASH_VERSION
2.04.21(1)−release

This update of the classic Bash scripting language added array variables, [62] string and parameter expansion,
and a better method of indirect variable references, among other features.

Example 35−1. String expansion

#!/bin/bash

String expansion.
Introduced with version 2 of Bash.

Strings of the form $'xxx'
have the standard escaped characters interpreted.

echo $'Ringing bell 3 times \a \a \a'
echo $'Three form feeds \f \f \f'
echo $'10 newlines \n\n\n\n\n\n\n\n\n\n'

exit 0

Example 35−2. Indirect variable references − the new way

#!/bin/bash

Indirect variable referencing.
This has a few of the attributes of references in C++.

a=letter_of_alphabet
letter_of_alphabet=z

echo "a = $a" # Direct reference.

echo "Now a = ${!a}" # Indirect reference.
The ${!variable} notation is greatly superior to the old "eval var1=\$$var2"

echo

t=table_cell_3
table_cell_3=24
echo "t = ${!t}" # t = 24
table_cell_3=387
echo "Value of t changed to ${!t}" # 387

This is useful for referencing members of an array or table,
or for simulating a multi−dimensional array.
An indexing option would have been nice (sigh).

exit 0

Chapter 35. Bash, version 2 309

Example 35−3. Using arrays and other miscellaneous trickery to deal four random hands from a deck
of cards

#!/bin/bash
May need to be invoked with #!/bin/bash2 on older machines.

Cards:
deals four random hands from a deck of cards.

UNPICKED=0
PICKED=1

DUPE_CARD=99

LOWER_LIMIT=0
UPPER_LIMIT=51
CARDS_IN_SUIT=13
CARDS=52

declare −a Deck
declare −a Suits
declare −a Cards
It would have been easier and more intuitive
with a single, 3−dimensional array.
Perhaps a future version of Bash will support multidimensional arrays.

initialize_Deck ()
{
i=$LOWER_LIMIT
until ["$i" −gt $UPPER_LIMIT]
do
 Deck[i]=$UNPICKED # Set each card of "Deck" as unpicked.
 let "i += 1"
done
echo
}

initialize_Suits ()
{
Suits[0]=C #Clubs
Suits[1]=D #Diamonds
Suits[2]=H #Hearts
Suits[3]=S #Spades
}

initialize_Cards ()
{
Cards=(2 3 4 5 6 7 8 9 10 J Q K A)
Alternate method of initializing an array.
}

pick_a_card ()
{
card_number=$RANDOM
let "card_number %= $CARDS"
if ["${Deck[card_number]}" −eq $UNPICKED]
then
 Deck[card_number]=$PICKED
 return $card_number
else

Advanced Bash−Scripting Guide

Chapter 35. Bash, version 2 310

 return $DUPE_CARD
fi
}

parse_card ()
{
number=$1
let "suit_number = number / CARDS_IN_SUIT"
suit=${Suits[suit_number]}
echo −n "$suit−"
let "card_no = number % CARDS_IN_SUIT"
Card=${Cards[card_no]}
printf %−4s $Card
Print cards in neat columns.
}

seed_random () # Seed random number generator.
{
seed=`eval date +%s`
let "seed %= 32766"
RANDOM=$seed
}

deal_cards ()
{
echo

cards_picked=0
while ["$cards_picked" −le $UPPER_LIMIT]
do
 pick_a_card
 t=$?

 if ["$t" −ne $DUPE_CARD]
 then
 parse_card $t

 u=$cards_picked+1
 # Change back to 1−based indexing (temporarily).
 let "u %= $CARDS_IN_SUIT"
 if ["$u" −eq 0] # Nested if/then condition test.
 then
 echo
 echo
 fi
 # Separate hands.

 let "cards_picked += 1"
 fi
done

echo

return 0
}

Structured programming:
entire program logic modularized in functions.

#================
seed_random

Advanced Bash−Scripting Guide

Chapter 35. Bash, version 2 311

initialize_Deck
initialize_Suits
initialize_Cards
deal_cards

exit 0
#================

Exercise 1:
Add comments to thoroughly document this script.

Exercise 2:
Revise the script to print out each hand sorted in suits.
You may add other bells and whistles if you like.

Exercise 3:
Simplify and streamline the logic of the script.

Advanced Bash−Scripting Guide

Chapter 35. Bash, version 2 312

Chapter 36. Endnotes

36.1. Author's Note

How did I come to write a Bash scripting book? It's a strange tale. It seems that a couple of years back, I
needed to learn shell scripting, and what better way to do that than to read a good book on the subject. I was
looking to buy a tutorial and reference covering all aspects of scripting. In fact, I was looking for this very
book, or something much like it. Unfortunately, it didn't exist, so if I wanted it, I had to write it. And so, here
we are, folks.

This reminds me of the apocryphal story about the mad professor. Crazy as a loon, the fellow was. At the
sight of a book, any book, at the library, at a bookstore, anywhere, he would become totally obsessed with the
idea that he could have written it, should have written it, and done a better job of it to boot. He would
thereupon rush home and proceed to do just that, write a book with the same title. When he died some years
later, he allegedly had several thousand books to his credit, probably putting even Asimov to shame. The
books might not have been any good, who knows, but does that really matter? Here's a fellow who lived his
dream, even if he was driven by it, and I can't help admiring the old coot...

36.2. About the Author

Who is this guy anyhow?

The author claims no credentials or special qualifications, other than a compulsion to write. [63] This book is
somewhat of a departure from his other major work, HOW−2 Meet Women: The Shy Man's Guide to
Relationships. He has also written the Software−Building HOWTO.

A Linux user since 1995 (Slackware 2.2, kernel 1.2.1), the author has emitted a few software truffles,
including the cruft one−time pad encryption utility, the mcalc mortgage calculator, the judge Scrabble®
adjudicator, and the yawl word gaming list package. He got his start in programming using FORTRAN IV on
a CDC 3800, but is not the least bit nostalgic for those days.

Living in a secluded desert community with wife and dog, he cherishes human frailty.

36.3. Tools Used to Produce This Book

36.3.1. Hardware

A used IBM Thinkpad, model 760XL laptop (P166, 80 meg RAM) running Red Hat 7.1. Sure, it's slow and
has a funky keyboard, but it beats the heck out of a No. 2 pencil and a Big Chief tablet.

36.3.2. Software and Printware

Bram Moolenaar's powerful SGML−aware vim text editor. i.
OpenJade, a DSSSL rendering engine for converting SGML documents into other formats. ii.

Chapter 36. Endnotes 313

http://personal.riverusers.com/~thegrendel/hmw45.zip
http://personal.riverusers.com/~thegrendel/hmw45.zip
http://linuxdoc.org/HOWTO/Software-Building-HOWTO.html
http://ibiblio.org/pub/Linux/utils/file/cruft-0.2.tar.gz
http://ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz
http://ibiblio.org/pub/Linux/games/amusements/judge-1.0.tar.gz
http://ibiblio.org/pub/Linux/libs/yawl-0.2.tar.gz
http://www.vim.org
http://www.netfolder.com/DSSSL/

Norman Walsh's DSSSL stylesheets. iii.
DocBook, The Definitive Guide, by Norman Walsh and Leonard Muellner (O'Reilly, ISBN
1−56592−580−7). This is the standard reference for anyone attempting to write a document in
Docbook SGML format.

iv.

36.4. Credits

Community participation made this project possible. The author gratefully acknowledges that writing this
book would have been an impossible task without help and feedback from all you people out there.

Philippe Martin translated this document into DocBook/SGML. While not on the job at a small French
company as a software developer, he enjoys working on GNU/Linux documentation and software, reading
literature, playing music, and for his peace of mind making merry with friends. You may run across him
somewhere in France or in the Basque Country, or email him at feloy@free.fr.

Philippe Martin also pointed out that positional parameters past $9 are possible using {bracket} notation, see
Example 5−5.

Stephane Chazelas sent a long list of corrections, additions, and example scripts. More than a contributor, he
has, in effect, taken on the role of editor for this document. Merci beaucoup !

I would like to especially thank Patrick Callahan, Mike Novak, and Pal Domokos for catching bugs, pointing
out ambiguities, and for suggesting clarifications and changes. Their lively discussion of shell scripting and
general documentation issues inspired me to try to make this document more readable.

I'm grateful to Jim Van Zandt for pointing out errors and omissions in version 0.2 of this document. He also
contributed an instructive example script.

Many thanks to Jordi Sanfeliu for giving permission to use his fine tree script (Example A−12).

Kudos to Noah Friedman for permission to use his string function script (Example A−13).

Emmanuel Rouat suggested corrections and additions on command substitution and aliases. He also
contributed a very nice sample .bashrc file (Appendix G).

Heiner Steven kindly gave permission to use his base conversion script, Example 12−29. He also made a
number of corrections and many helpful suggestions. Special thanks.

Florian Wisser enlightened me on some of the fine points of testing strings (see Example 7−5), and on other
matters.

Oleg Philon sent suggestions concerning cut and pidof.

Marc−Jano Knopp sent corrections on DOS batch files.

Hyun Jin Cha found several typos in the document in the process of doing a Korean translation. Thanks for
pointing these out.

Advanced Bash−Scripting Guide

36.4. Credits 314

http://nwalsh.com/docbook/dsssl/
mailto:feloy@free.fr
mailto:feloy@free.fr
mailto:stephane_chazelas@yahoo.fr
mailto:mikaku@arrakis.es
mailto:friedman@prep.ai.mit.edu
mailto:emmanuel.rouat@wanadoo.fr
mailto:heiner.steven@odn.de

Others making helpful suggestions and pointing out errors were Gabor Kiss, Leopold Toetsch, Peter Tillier,
Nick Drage (script ideas!), and David Lawyer (himself an author of 4 HOWTOs).

My gratitude to Chet Ramey and Brian Fox for writing Bash, an elegant and powerful scripting tool.

Thanks most of all to my wife, Anita, for her encouragement and emotional support.

Bibliography

Dale Dougherty and Arnold Robbins, Sed and Awk, 2nd edition, O'Reilly and Associates, 1997,
1−156592−225−5.

To unfold the full power of shell scripting, you need at least a passing familiarity with sed and awk. This is
the standard tutorial. It includes an excellent introduction to "regular expressions". Read this book.

*

Aeleen Frisch, Essential System Administration, 2nd edition, O'Reilly and Associates, 1995, 1−56592−127−5.

This excellent sys admin manual has a decent introduction to shell scripting for sys administrators and does a
nice job of explaining the startup and initialization scripts. The book is long overdue for a third edition (are
you listening, Tim O'Reilly?).

*

Stephen Kochan and Patrick Woods, Unix Shell Programming, Hayden, 1990, 067248448X.

The standard reference, though a bit dated by now.

*

Neil Matthew and Richard Stones, Beginning Linux Programming, Wrox Press, 1996, 1874416680.

Good in−depth coverage of various programming languages available for Linux, including a fairly strong
chapter on shell scripting.

*

Herbert Mayer, Advanced C Programming on the IBM PC, Windcrest Books, 1989, 0830693637.

Excellent coverage of algorithms and general programming practices.

*

Advanced Bash−Scripting Guide

Bibliography 315

mailto:chet@po.cwru.edu

David Medinets, Unix Shell Programming Tools, McGraw−Hill, 1999, 0070397333.

Good info on shell scripting, with examples, and a short intro to Tcl and Perl.

*

Cameron Newham and Bill Rosenblatt, Learning the Bash Shell, 2nd edition, O'Reilly and Associates, 1998,
1−56592−347−2.

This is a valiant effort at a decent shell primer, but somewhat deficient in coverage on programming topics
and lacking sufficient examples.

*

Anatole Olczak, Bourne Shell Quick Reference Guide, ASP, Inc., 1991, 093573922X.

A very handy pocket reference, despite lacking coverage of Bash−specific features.

*

Jerry Peek, Tim O'Reilly, and Mike Loukides, Unix Power Tools, 2nd edition, O'Reilly and Associates,
Random House, 1997, 1−56592−260−3.

Contains a couple of sections of very informative in−depth articles on shell programming, but falls short of
being a tutorial. It reproduces much of the regular expressions tutorial from the Dougherty and Robbins book,
above.

*

Arnold Robbins, Bash Reference Card, SSC, 1998, 1−58731−010−5.

Excellent Bash pocket reference (don't leave home without it). A bargain at $4.95, but also available for free
download on−line in pdf format.

*

Arnold Robbins, Effective Awk Programming, Free Software Foundation / O'Reilly and Associates, 2000,
1−882114−26−4.

The absolute best awk tutorial and reference. The free electronic version of this book is part of the
awk documentation, and printed copies of the latest version are available from O'Reilly and Associates.

This book has served as an inspiration for the author of this document.

*

Advanced Bash−Scripting Guide

Bibliography 316

http://www.ssc.com/ssc/bash/

Bill Rosenblatt, Learning the Korn Shell, O'Reilly and Associates, 1993, 1−56592−054−6.

This well−written book contains some excellent pointers on shell scripting.

*

Paul Sheer, LINUX: Rute User's Tutorial and Exposition, 1st edition, , 2002, 0−13−033351−4.

Very detailed and readable introduction to Linux system administration.

The book is available in print, or on−line.

*

Ellen Siever and and the Staff of O'Reilly and Associates, Linux in a Nutshell, 2nd edition, O'Reilly and
Associates, 1999, 1−56592−585−8.

The all−around best Linux command reference, even has a Bash section.

*

The UNIX CD Bookshelf, 2nd edition, O'Reilly and Associates, 2000, 1−56592−815−6.

An array of six UNIX books on CD ROM, including UNIX Power Tools, Sed and Awk, and Learning the
Korn Shell. A complete set of all the UNIX references and tutorials you would ever need at about $70. Buy
this one, even if it means going into debt and not paying the rent.

Unfortunately, out of print at present.

*

The O'Reilly books on Perl. (Actually, any O'Reilly books.)

−−−

Ben Okopnik's well−written introductory Bash scripting articles in issues 53, 54, 55, 57, and 59 of the Linux
Gazette , and his explanation of "The Deep, Dark Secrets of Bash" in issue 56.

Chet Ramey's bash − The GNU Shell, a two−part series published in issues 3 and 4 of the Linux Journal,
July−August 1994.

Mike G's Bash−Programming−Intro HOWTO.

Advanced Bash−Scripting Guide

Bibliography 317

http://rute.sourceforge.net/
http://www.linuxgazette.com
http://www.linuxgazette.com
http://www.linuxjournal.com
http://www.linuxdoc.org/HOWTO/Bash-Prog-Intro-HOWTO.html

Richard's UNIX Scripting Universe.

Chet Ramey's Bash F.A.Q.

Example shell scripts at Lucc's Shell Scripts .

Example shell scripts at SHELLdorado .

Example shell scripts at Noah Friedman's script site.

Example shell scripts at SourceForge Snippet Library − shell scrips.

Giles Orr's Bash−Prompt HOWTO.

The sed F.A.Q.

Carlos Duarte's instructive "Do It With Sed" tutorial.

The GNU gawk reference manual (gawk is the extended GNU version of awk available on Linux and BSD
systems).

Trent Fisher's groff tutorial.

Mark Komarinski's Printing−Usage HOWTO.

There is some nice material on I/O redirection in chapter 10 of the textutils documentation at the University
of Alberta site.

Rick Hohensee has written the osimpa i386 assembler entirely as Bash scripts.

−−−

The excellent "Bash Reference Manual", by Chet Ramey and Brian Fox, distributed as part of the
"bash−2−doc" package (available as an rpm). See especially the instructive example scripts in this package.

The comp.os.unix.shell newsgroup.

Advanced Bash−Scripting Guide

Bibliography 318

http://www.injunea.demon.co.uk/index.htm
ftp://ftp.cwru.edu/pub/bash/FAQ
http://alge.anart.no/linux/scripts/
http://www.oase-shareware.org/shell/scripts
http://clri6f.gsi.de/gnu/bash-2.01/examples/scripts.noah/
http://sourceforge.net/snippet/browse.php?by=lang&lang=7
http://www.linuxdoc.org/HOWTO/Bash-Prompt-HOWTO.html
http://www.cornerstonemag.com/sed/sedfaq.html
http://www.dbnet.ece.ntua.gr/~george/sed/sedtut_1.html
http://sunsite.ualberta.ca/Documentation/Gnu/gawk-3.0.6/gawk.html
http://www.cs.pdx.edu/~trent/gnu/groff/groff.html
http://www.linuxdoc.org/HOWTO/Printing-Usage-HOWTO.html
http://sunsite.ualberta.ca/Documentation/Gnu/textutils-2.0/html_chapter/textutils_10.html
http://sunsite.ualberta.ca/Documentation
http://sunsite.ualberta.ca/Documentation
mailto:humbubba@smarty.smart.net
ftp://ftp.gwdg.de/pub/linux/install/clienux/interim/osimpa.tgz
news:comp.unix.shell

The manpages for bash and bash2, date, expect, expr, find, grep, gzip, ln, patch, tar, tr, bc, xargs. The
texinfo documentation on bash, dd, m4, gawk, and sed.

Appendix A. Contributed Scripts

These scripts, while not fitting into the text of this document, do illustrate some interesting shell
programming techniques. They are useful, too. Have fun analyzing and running them.

Example A−1. manview: Viewing formatted manpages

#!/bin/bash
manview.sh: Formats the source of a man page for viewing.

This is useful when writing man page source and you want to
look at the intermediate results on the fly while working on it.

E_WRONGARGS=65

if [−z "$1"]
then
 echo "Usage: `basename $0` [filename]"
 exit $E_WRONGARGS
fi

groff −Tascii −man $1 | less
From the man page for groff.

If the man page includes tables and/or equations,
then the above code will barf.
The following line can handle such cases.
#
gtbl < "$1" | geqn −Tlatin1 | groff −Tlatin1 −mtty−char −man
#
Thanks, S.C.

exit 0

Example A−2. mailformat: Formatting an e−mail message

#!/bin/bash
mail−format.sh: Format e−mail messages.

Gets rid of carets, tabs, also fold excessively long lines.

ARGS=1
E_BADARGS=65
E_NOFILE=66

if [$# −ne $ARGS] # Correct number of arguments passed to script?
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

if [−f "$1"] # Check if file exists.
then

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 319

 file_name=$1
else
 echo "File \"$1\" does not exist."
 exit $E_NOFILE
fi

MAXWIDTH=70 # Width to fold long lines to.

sed '
s/^>//
s/^ *>//
s/^ *//
s/ *//
' $1 | fold −s −−width=$MAXWIDTH
 # −s option to "fold" breaks lines at whitespace, if possible.

This script was inspired by an article in a well−known trade journal
extolling a 164K Windows utility with similar functionality.

exit 0

Example A−3. rn: A simple−minded file rename utility

This script is a modification of Example 12−15.

#! /bin/bash
#
Very simpleminded filename "rename" utility (based on "lowercase.sh").
#
The "ren" utility, by Vladimir Lanin (lanin@csd2.nyu.edu),
does a much better job of this.

ARGS=2
E_BADARGS=65
ONE=1 # For getting singular/plural right (see below).

if [$# −ne "$ARGS"]
then
 echo "Usage: `basename $0` old−pattern new−pattern"
 # As in "rn gif jpg", which renames all gif files in working directory to jpg.
 exit $E_BADARGS
fi

number=0 # Keeps track of how many files actually renamed.

for filename in *$1* #Traverse all matching files in directory.
do
 if [−f "$filename"] # If finds match...
 then
 fname=`basename $filename` # Strip off path.
 n=`echo $fname | sed −e "s/$1/$2/"` # Substitute new for old in filename.
 mv $fname $n # Rename.
 let "number += 1"
 fi
done

if ["$number" −eq "$ONE"] # For correct grammar.
then
 echo "$number file renamed."

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 320

else
 echo "$number files renamed."
fi

exit 0

Exercise for reader:
What type of files will this not work on?
How to fix this?

Example A−4. encryptedpw: Uploading to an ftp site, using a locally encrypted password

#!/bin/bash

Example "ex72.sh" modified to use encrypted password.

Note that this is still somewhat insecure,
#+ since the decrypted password is sent in the clear.
Use something like "ssh" if this is a concern.

E_BADARGS=65

if [−z "$1"]
then
 echo "Usage: `basename $0` filename"
 exit $E_BADARGS
fi

Username=bozo # Change to suit.
pword=/home/bozo/secret/password_encrypted.file
File containing encrypted password.

Filename=`basename $1` # Strips pathname out of file name

Server="XXX"
Directory="YYY" # Change above to actual server name & directory.

Password=`cruft <$pword` # Decrypt password.
Uses the author's own "cruft" file encryption package,
#+ based on the classic "onetime pad" algorithm,
#+ and obtainable from:
#+ Primary−site: ftp://metalab.unc.edu /pub/Linux/utils/file
#+ cruft−0.2.tar.gz [16k]

ftp −n $Server <<End−Of−Session
user $Username $Password
binary
bell
cd $Directory
put $Filename
bye
End−Of−Session
−n option to "ftp" disables auto−logon.
"bell" rings 'bell' after each file transfer.

exit 0

Example A−5. copy−cd: Copying a data CD

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 321

#!/bin/bash
copy−cd.sh: copying a data CD

CDROM=/dev/cdrom # CD ROM device
OF=/home/bozo/projects/cdimage.iso # output file
/xxxx/xxxxxxx/ Change to suit your system.
BLOCKSIZE=2048
SPEED=2 # May use higher speed if supported.

echo; echo "Insert source CD, but do *not* mount it."
echo "Press ENTER when ready. "
read ready # Wait for input, $ready not used.

echo; echo "Copying the source CD to $OF."
echo "This may take a while. Please be patient."

dd if=$CDROM of=$OF bs=$BLOCKSIZE # Raw device copy.

echo; echo "Remove data CD."
echo "Insert blank CDR."
echo "Press ENTER when ready. "
read ready # Wait for input, $ready not used.

echo "Copying $OF to CDR."

cdrecord −v −isosize speed=$SPEED dev=0,0 $OF
Uses Joerg Schilling's "cdrecord" package (see its docs).
http://www.fokus.gmd.de/nthp/employees/schilling/cdrecord.html

echo; echo "Done copying $OF to CDR on device $CDROM."

echo "Do you want to erase the image file (y/n)? " # Probably a huge file.
read answer

case "$answer" in
[yY]) rm −f $OF
 echo "$OF erased."
 ;;
*) echo "$OF not erased.";;
esac

echo

Exercise for the reader:
Change the above "case" statement to also accept "yes" and "Yes" as input.

exit 0

Example A−6. days−between: Calculate number of days between two dates

#!/bin/bash
days−between.sh: Number of days between two dates.
Usage: ./days−between.sh [M]M/[D]D/YYYY [M]M/[D]D/YYYY

ARGS=2 # Two command line parameters expected.
E_PARAM_ERR=65 # Param error.

REFYR=1600 # Reference year.
CENTURY=100

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 322

DIY=365
ADJ_DIY=367 # Adjusted for leap year + fraction.
MIY=12
DIM=31
LEAPCYCLE=4

MAXRETVAL=256 # Largest permissable
 # positive return value from a function.

diff= # Declare global variable for date difference.
value= # Declare global variable for absolute value.
day= # Declare globals for day, month, year.
month=
year=

Param_Error () # Command line parameters wrong.
{
 echo "Usage: `basename $0` [M]M/[D]D/YYYY [M]M/[D]D/YYYY"
 echo " (date must be after 1/3/1600)"
 exit $E_PARAM_ERR
}

Parse_Date () # Parse date from command line params.
{
 month=${1%%/**}
 dm=${1%/**} # Day and month.
 day=${dm#*/}
 let "year = `basename $1`" # Not a filename, but works just the same.
}

check_date () # Checks for invalid date(s) passed.
{
 ["$day" −gt "$DIM"] || ["$month" −gt "$MIY"] || ["$year" −lt "$REFYR"] && Param_Error
 # Exit script on bad value(s).
 # Uses "or−list / and−list".
 # Exercise for the reader: Implement more rigorous date checking.
}

strip_leading_zero () # Better to strip possible leading zero(s)
{ # from day and/or month
 val=${1#0} # since otherwise Bash will interpret them
 return $val # as octal values (POSIX.2, sect 2.9.2.1).
}

day_index () # Gauss' Formula:
{ # Days from Jan. 3, 1600 to date passed as param.

 day=$1
 month=$2
 year=$3

 let "month = $month − 2"
 if ["$month" −le 0]
 then
 let "month += 12"
 let "year −= 1"
 fi

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 323

 let "year −= $REFYR"
 let "indexyr = $year / $CENTURY"

 let "Days = $DIY*$year + $year/$LEAPCYCLE − $indexyr + $indexyr/$LEAPCYCLE + ADJ_DIY*month/$MIY + $day − $DIM"
 # For an in−depth explanation of this algorithm, see
 # http://home.t−online.de/home/berndt.schwerdtfeger/cal.htm

 if ["$Days" −gt "$MAXRETVAL"] # If greater than 256,
 then # then change to negative value
 let "dindex = 0 − $Days" # which can be returned from function.
 else let "dindex = $Days"
 fi

 return $dindex

}

calculate_difference () # Difference between to day indices.
{
 let "diff = $1 − $2" # Global variable.
}

abs () # Absolute value
{ # Uses global "value" variable.
 if ["$1" −lt 0] # If negative
 then # then
 let "value = 0 − $1" # change sign,
 else # else
 let "value = $1" # leave it alone.
 fi
}

if [$# −ne "$ARGS"] # Require two command line params.
then
 Param_Error
fi

Parse_Date $1
check_date $day $month $year # See if valid date.

strip_leading_zero $day # Remove any leading zeroes
day=$? # on day and/or month.
strip_leading_zero $month
month=$?

day_index $day $month $year
date1=$?

abs $date1 # Make sure it's positive
date1=$value # by getting absolute value.

Parse_Date $2
check_date $day $month $year

strip_leading_zero $day

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 324

day=$?
strip_leading_zero $month
month=$?

day_index $day $month $year
date2=$?

abs $date2 # Make sure it's positive.
date2=$value

calculate_difference $date1 $date2

abs $diff # Make sure it's positive.
diff=$value

echo $diff

exit 0
Compare this script with the implementation of Gauss' Formula in C at
http://buschencrew.hypermart.net/software/datedif

+

The following two scripts are by Mark Moraes of the University of Toronto. See the enclosed file
"Moraes−COPYRIGHT" for permissions and restrictions.

Example A−7. behead: Removing mail and news message headers

#! /bin/sh
Strips off the header from a mail/News message i.e. till the first
empty line
Mark Moraes, University of Toronto

==> These comments added by author of this document.

if [$# −eq 0]; then
==> If no command line args present, then works on file redirected to stdin.
 sed −e '1,/^$/d' −e '/^[]*$/d'
 # −−> Delete empty lines and all lines until
 # −−> first one beginning with white space.
else
==> If command line args present, then work on files named.
 for i do
 sed −e '1,/^$/d' −e '/^[]*$/d' $i
 # −−> Ditto, as above.
 done
fi

==> Exercise for the reader: Add error checking and other options.
==>
==> Note that the small sed script repeats, except for the arg passed.
==> Does it make sense to embed it in a function? Why or why not?

Example A−8. ftpget: Downloading files via ftp

#! /bin/sh
$Id: ftpget,v 1.2 91/05/07 21:15:43 moraes Exp $
Script to perform batch anonymous ftp. Essentially converts a list of

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 325

of command line arguments into input to ftp.
Simple, and quick − written as a companion to ftplist
−h specifies the remote host (default prep.ai.mit.edu)
−d specifies the remote directory to cd to − you can provide a sequence
of −d options − they will be cd'ed to in turn. If the paths are relative,
make sure you get the sequence right. Be careful with relative paths −
there are far too many symlinks nowadays.
(default is the ftp login directory)
−v turns on the verbose option of ftp, and shows all responses from the
ftp server.
−f remotefile[:localfile] gets the remote file into localfile
−m pattern does an mget with the specified pattern. Remember to quote
shell characters.
−c does a local cd to the specified directory
For example,
ftpget −h expo.lcs.mit.edu −d contrib −f xplaces.shar:xplaces.sh \
−d ../pub/R3/fixes −c ~/fixes −m 'fix*'
will get xplaces.shar from ~ftp/contrib on expo.lcs.mit.edu, and put it in
xplaces.sh in the current working directory, and get all fixes from
~ftp/pub/R3/fixes and put them in the ~/fixes directory.
Obviously, the sequence of the options is important, since the equivalent
commands are executed by ftp in corresponding order
#
Mark Moraes (moraes@csri.toronto.edu), Feb 1, 1989
==> Angle brackets changed to parens, so Docbook won't get indigestion.
#

==> These comments added by author of this document.

PATH=/local/bin:/usr/ucb:/usr/bin:/bin
export PATH
==> Above 2 lines from original script probably superfluous.

TMPFILE=/tmp/ftp.$$
==> Creates temp file, using process id of script ($$)
==> to construct filename.

SITE=`domainname`.toronto.edu
==> 'domainname' similar to 'hostname'
==> May rewrite this to parameterize this for general use.

usage="Usage: $0 [−h remotehost] [−d remotedirectory]... [−f remfile:localfile]... \
 [−c localdirectory] [−m filepattern] [−v]"
ftpflags="−i −n"
verbflag=
set −f # So we can use globbing in −m
set x `getopt vh:d:c:m:f: $*`
if [$? != 0]; then
 echo $usage
 exit 65
fi
shift
trap 'rm −f ${TMPFILE} ; exit' 0 1 2 3 15
echo "user anonymous ${USER−gnu}@${SITE} > ${TMPFILE}"
==> Added quotes (recommended in complex echoes).
echo binary >> ${TMPFILE}
for i in $* # ==> Parse command line args.
do
 case $i in
 −v) verbflag=−v; echo hash >> ${TMPFILE}; shift;;
 −h) remhost=$2; shift 2;;

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 326

 −d) echo cd $2 >> ${TMPFILE};
 if [x${verbflag} != x]; then
 echo pwd >> ${TMPFILE};
 fi;
 shift 2;;
 −c) echo lcd $2 >> ${TMPFILE}; shift 2;;
 −m) echo mget "$2" >> ${TMPFILE}; shift 2;;
 −f) f1=`expr "$2" : "\([^:]*\).*"`; f2=`expr "$2" : "[^:]*:\(.*\)"`;
 echo get ${f1} ${f2} >> ${TMPFILE}; shift 2;;
 −−) shift; break;;
 esac
done
if [$# −ne 0]; then
 echo $usage
 exit 65 # ==> Changed from "exit 2" to conform with standard.
fi
if [x${verbflag} != x]; then
 ftpflags="${ftpflags} −v"
fi
if [x${remhost} = x]; then
 remhost=prep.ai.mit.edu
 # ==> Rewrite to match your favorite ftp site.
fi
echo quit >> ${TMPFILE}
==> All commands saved in tempfile.

ftp ${ftpflags} ${remhost} < ${TMPFILE}
==> Now, tempfile batch processed by ftp.

rm −f ${TMPFILE}
==> Finally, tempfile deleted (you may wish to copy it to a logfile).

==> Exercises for reader:
==> 1) Add error checking.
==> 2) Add bells & whistles.

+

Antek Sawicki contributed the following script, which makes very clever use of the parameter substitution
operators discussed in Section 9.3.

Example A−9. password: Generating random 8−character passwords

#!/bin/bash
May need to be invoked with #!/bin/bash2 on older machines.
#
Random password generator for bash 2.x by Antek Sawicki <tenox@tenox.tc>,
who generously gave permission to the document author to use it here.
#
==> Comments added by document author ==>

MATRIX="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
LENGTH="8"
==> May change 'LENGTH' for longer password, of course.

while ["${n:=1}" −le "$LENGTH"]

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 327

==> Recall that := is "default substitution" operator.
==> So, if 'n' has not been initialized, set it to 1.
do
 PASS="$PASS${MATRIX:$(($RANDOM%${#MATRIX})):1}"
 # ==> Very clever, but tricky.

 # ==> Starting from the innermost nesting...
 # ==> ${#MATRIX} returns length of array MATRIX.

 # ==> $RANDOM%${#MATRIX} returns random number between 1
 # ==> and length of MATRIX − 1.

 # ==> ${MATRIX:$(($RANDOM%${#MATRIX})):1}
 # ==> returns expansion of MATRIX at random position, by length 1.
 # ==> See {var:pos:len} parameter substitution in Section 3.3.1
 # ==> and following examples.

 # ==> PASS=... simply pastes this result onto previous PASS (concatenation).

 # ==> To visualize this more clearly, uncomment the following line
 # ==> echo "$PASS"
 # ==> to see PASS being built up,
 # ==> one character at a time, each iteration of the loop.

 let n+=1
 # ==> Increment 'n' for next pass.
done

echo "$PASS" # ==> Or, redirect to file, as desired.

exit 0

+

James R. Van Zandt contributed this script, which uses named pipes and, in his words, "really exercises
quoting and escaping".

Example A−10. fifo: Making daily backups, using named pipes

#!/bin/bash
==> Script by James R. Van Zandt, and used here with his permission.

==> Comments added by author of this document.

 HERE=`uname −n` # ==> hostname
 THERE=bilbo
 echo "starting remote backup to $THERE at `date +%r`"
 # ==> `date +%r` returns time in 12−hour format, i.e. "08:08:34 PM".

 # make sure /pipe really is a pipe and not a plain file
 rm −rf /pipe
 mkfifo /pipe # ==> Create a "named pipe", named "/pipe".

 # ==> 'su xyz' runs commands as user "xyz".
 # ==> 'ssh' invokes secure shell (remote login client).
 su xyz −c "ssh $THERE \"cat >/home/xyz/backup/${HERE}−daily.tar.gz\" < /pipe"&
 cd /
 tar −czf − bin boot dev etc home info lib man root sbin share usr var >/pipe

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 328

 # ==> Uses named pipe, /pipe, to communicate between processes:
 # ==> 'tar/gzip' writes to /pipe and 'ssh' reads from /pipe.

 # ==> The end result is this backs up the main directories, from / on down.

 # ==> What are the advantages of a "named pipe" in this situation,
 # ==> as opposed to an "anonymous pipe", with |?
 # ==> Will an anonymous pipe even work here?

 exit 0

+

Stephane Chazelas contributed the following script to demonstrate that generating prime numbers does not
require arrays.

Example A−11. Generating prime numbers using the modulo operator

#!/bin/bash
primes.sh: Generate prime numbers, without using arrays.

This does *not* use the classic "Sieve of Erastosthenes" algorithm,
#+ but instead uses the more intuitive method of testing each candidate number
#+ for factors (divisors), using the "%" modulo operator.
#
Script contributed by Stephane Chazelas,

LIMIT=1000 # Primes 2 − 1000

Primes()
{
 ((n = $1 + 1)) # Bump to next integer.
 shift # Next parameter in list.
echo "_n=$n i=$i_"

 if ((n == LIMIT))
 then echo $*
 return
 fi

 for i; do # "i" gets set to "@", previous values of $n.
echo "−n=$n i=$i−"
 ((i * i > n)) && break # Optimization.
 ((n % i)) && continue # Sift out non−primes using modulo operator.
 Primes $n $@ # Recursion inside loop.
 return
 done

 Primes $n $@ $n # Recursion outside loop.
 # Successively accumulate positional parameters.
 # "$@" is the accumulating list of primes.
}

Primes 1

exit 0

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 329

Uncomment lines 17 and 25 to help figure out what is going on.

Compare the speed of this algorithm for generating primes
with the Sieve of Erastosthenes (ex68.sh).

Exercise: Rewrite this script without recursion, for faster execution.

+

Jordi Sanfeliu gave permission to use his elegant tree script.

Example A−12. tree: Displaying a directory tree

#!/bin/sh
@(#) tree 1.1 30/11/95 by Jordi Sanfeliu
email: mikaku@arrakis.es
#
Initial version: 1.0 30/11/95
Next version : 1.1 24/02/97 Now, with symbolic links
Patch by : Ian Kjos, to support unsearchable dirs
email: beth13@mail.utexas.edu
#
Tree is a tool for view the directory tree (obvious :−))
#

==> 'Tree' script used here with the permission of its author, Jordi Sanfeliu.
==> Comments added by the author of this document.
==> Argument quoting added.

search () {
 for dir in `echo *`
 # ==> `echo *` lists all the files in current working directory, without line breaks.
 # ==> Similar effect to for dir in *
 # ==> but "dir in `echo *`" will not handle filenames with blanks.
 do
 if [−d "$dir"] ; then # ==> If it is a directory (−d)...
 zz=0 # ==> Temp variable, keeping track of directory level.
 while [$zz != $deep] # Keep track of inner nested loop.
 do
 echo −n "| " # ==> Display vertical connector symbol,
 # ==> with 2 spaces & no line feed in order to indent.
 zz=`expr $zz + 1` # ==> Increment zz.
 done
 if [−L "$dir"] ; then # ==> If directory is a symbolic link...
 echo "+−−−$dir" `ls −l $dir | sed 's/^.*'$dir' //'`
 # ==> Display horiz. connector and list directory name, but...
 # ==> delete date/time part of long listing.
 else
 echo "+−−−$dir" # ==> Display horizontal connector symbol...
 # ==> and print directory name.
 if cd "$dir" ; then # ==> If can move to subdirectory...
 deep=`expr $deep + 1` # ==> Increment depth.
 search # with recursivity ;−)
 # ==> Function calls itself.
 numdirs=`expr $numdirs + 1` # ==> Increment directory count.
 fi
 fi
 fi

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 330

 done
 cd .. # ==> Up one directory level.
 if ["$deep"] ; then # ==> If depth = 0 (returns TRUE)...
 swfi=1 # ==> set flag showing that search is done.
 fi
 deep=`expr $deep − 1` # ==> Decrement depth.
}

− Main −
if [$# = 0] ; then
 cd `pwd` # ==> No args to script, then use current working directory.
else
 cd $1 # ==> Otherwise, move to indicated directory.
fi
echo "Initial directory = `pwd`"
swfi=0 # ==> Search finished flag.
deep=0 # ==> Depth of listing.
numdirs=0
zz=0

while ["$swfi" != 1] # While flag not set...
do
 search # ==> Call function after initializing variables.
done
echo "Total directories = $numdirs"

exit 0
==> Challenge to reader: try to figure out exactly how this script works.

Noah Friedman gave permission to use his string function script, which essentially reproduces some of the
C−library string manipulation functions.

Example A−13. string functions: C−like string functions

#!/bin/bash

string.bash −−− bash emulation of string(3) library routines
Author: Noah Friedman <friedman@prep.ai.mit.edu>
==> Used with his kind permission in this document.
Created: 1992−07−01
Last modified: 1993−09−29
Public domain

Conversion to bash v2 syntax done by Chet Ramey

Commentary:
Code:

#:docstring strcat:
Usage: strcat s1 s2
#
Strcat appends the value of variable s2 to variable s1.
#
Example:
a="foo"
b="bar"
strcat a b
echo $a
=> foobar

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 331

#
#:end docstring:

###;;;autoload ==> Autoloading of function commented out.
function strcat ()
{
 local s1_val s2_val

 s1_val=${!1} # indirect variable expansion
 s2_val=${!2}
 eval "$1"=\'"${s1_val}${s2_val}"\'
 # ==> eval $1='${s1_val}${s2_val}' avoids problems,
 # ==> if one of the variables contains a single quote.
}

#:docstring strncat:
Usage: strncat s1 s2 $n

Line strcat, but strncat appends a maximum of n characters from the value
of variable s2. It copies fewer if the value of variabl s2 is shorter
than n characters. Echoes result on stdout.
#
Example:
a=foo
b=barbaz
strncat a b 3
echo $a
=> foobar
#
#:end docstring:

###;;;autoload
function strncat ()
{
 local s1="$1"
 local s2="$2"
 local −i n="$3"
 local s1_val s2_val

 s1_val=${!s1} # ==> indirect variable expansion
 s2_val=${!s2}

 if [${#s2_val} −gt ${n}]; then
 s2_val=${s2_val:0:$n} # ==> substring extraction
 fi

 eval "$s1"=\'"${s1_val}${s2_val}"\'
 # ==> eval $1='${s1_val}${s2_val}' avoids problems,
 # ==> if one of the variables contains a single quote.
}

#:docstring strcmp:
Usage: strcmp $s1 $s2
#
Strcmp compares its arguments and returns an integer less than, equal to,
or greater than zero, depending on whether string s1 is lexicographically
less than, equal to, or greater than string s2.
#:end docstring:

###;;;autoload
function strcmp ()
{

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 332

 ["$1" = "$2"] && return 0

 ["${1}" '<' "${2}"] > /dev/null && return −1

 return 1
}

#:docstring strncmp:
Usage: strncmp $s1 $s2 $n

Like strcmp, but makes the comparison by examining a maximum of n
characters (n less than or equal to zero yields equality).
#:end docstring:

###;;;autoload
function strncmp ()
{
 if [−z "${3}" −o "${3}" −le "0"]; then
 return 0
 fi

 if [${3} −ge ${#1} −a ${3} −ge ${#2}]; then
 strcmp "$1" "$2"
 return $?
 else
 s1=${1:0:$3}
 s2=${2:0:$3}
 strcmp $s1 $s2
 return $?
 fi
}

#:docstring strlen:
Usage: strlen s
#
Strlen returns the number of characters in string literal s.
#:end docstring:

###;;;autoload
function strlen ()
{
 eval echo "\${#${1}}"
 # ==> Returns the length of the value of the variable
 # ==> whose name is passed as an argument.
}

#:docstring strspn:
Usage: strspn $s1 $s2

Strspn returns the length of the maximum initial segment of string s1,
which consists entirely of characters from string s2.
#:end docstring:

###;;;autoload
function strspn ()
{
 # Unsetting IFS allows whitespace to be handled as normal chars.
 local IFS=
 local result="${1%%[!${2}]*}"

 echo ${#result}
}

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 333

#:docstring strcspn:
Usage: strcspn $s1 $s2
#
Strcspn returns the length of the maximum initial segment of string s1,
which consists entirely of characters not from string s2.
#:end docstring:

###;;;autoload
function strcspn ()
{
 # Unsetting IFS allows whitspace to be handled as normal chars.
 local IFS=
 local result="${1%%[${2}]*}"

 echo ${#result}
}

#:docstring strstr:
Usage: strstr s1 s2

Strstr echoes a substring starting at the first occurrence of string s2 in
string s1, or nothing if s2 does not occur in the string. If s2 points to
a string of zero length, strstr echoes s1.
#:end docstring:

###;;;autoload
function strstr ()
{
 # if s2 points to a string of zero length, strstr echoes s1
 [${#2} −eq 0] && { echo "$1" ; return 0; }

 # strstr echoes nothing if s2 does not occur in s1
 case "$1" in
 $2) ;;
 *) return 1;;
 esac

 # use the pattern matching code to strip off the match and everything
 # following it
 first=${1/$2*/}

 # then strip off the first unmatched portion of the string
 echo "${1##$first}"
}

#:docstring strtok:
Usage: strtok s1 s2
#
Strtok considers the string s1 to consist of a sequence of zero or more
text tokens separated by spans of one or more characters from the
separator string s2. The first call (with a non−empty string s1
specified) echoes a string consisting of the first token on stdout. The
function keeps track of its position in the string s1 between separate
calls, so that subsequent calls made with the first argument an empty
string will work through the string immediately following that token. In
this way subsequent calls will work through the string s1 until no tokens
remain. The separator string s2 may be different from call to call.
When no token remains in s1, an empty value is echoed on stdout.
#:end docstring:

###;;;autoload

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 334

function strtok ()
{
 :
}

#:docstring strtrunc:
Usage: strtrunc $n $s1 {$s2} {$...}
#
Used by many functions like strncmp to truncate arguments for comparison.
Echoes the first n characters of each string s1 s2 ... on stdout.
#:end docstring:

###;;;autoload
function strtrunc ()
{
 n=$1 ; shift
 for z; do
 echo "${z:0:$n}"
 done
}

provide string

string.bash ends here

==
==> Everything below here added by the document author.

==> Suggested use of this script is to delete everything below here,
==> and "source" this file into your own scripts.

strcat
string0=one
string1=two
echo
echo "Testing \"strcat\" function:"
echo "Original \"string0\" = $string0"
echo "\"string1\" = $string1"
strcat string0 string1
echo "New \"string0\" = $string0"
echo

strlen
echo
echo "Testing \"strlen\" function:"
str=123456789
echo "\"str\" = $str"
echo −n "Length of \"str\" = "
strlen str
echo

Exercise for reader:
Add code to test all the other string functions above.

exit 0

Stephane Chazelas demonstrates object−oriented programming a Bash script.

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 335

Example A−14. Object−oriented database

#!/bin/bash
obj−oriented.sh: Object−oriented programming in a shell script.
Script by Stephane Chazelas.

person.new() # Looks almost like a class declaration in C++.
{
 local obj_name=$1 name=$2 firstname=$3 birthdate=$4

 eval "$obj_name.set_name() {
 eval \"$obj_name.get_name() {
 echo \$1
 }\"
 }"

 eval "$obj_name.set_firstname() {
 eval \"$obj_name.get_firstname() {
 echo \$1
 }\"
 }"

 eval "$obj_name.set_birthdate() {
 eval \"$obj_name.get_birthdate() {
 echo \$1
 }\"
 eval \"$obj_name.show_birthdate() {
 echo \$(date −d \"1/1/1970 0:0:\$1 GMT\")
 }\"
 eval \"$obj_name.get_age() {
 echo \$(((\$(date +%s) − \$1) / 3600 / 24 / 365))
 }\"
 }"

 $obj_name.set_name $name
 $obj_name.set_firstname $firstname
 $obj_name.set_birthdate $birthdate
}

echo

person.new self Bozeman Bozo 101272413
Create an instance of "person.new" (actually passing args to the function).

self.get_firstname # Bozo
self.get_name # Bozeman
self.get_age # 28
self.get_birthdate # 101272413
self.show_birthdate # Sat Mar 17 20:13:33 MST 1973

echo

typeset −f
to see the created functions (careful, it scrolls off the page).

exit 0

Advanced Bash−Scripting Guide

Appendix A. Contributed Scripts 336

Appendix B. A Sed and Awk Micro−Primer

This is a very brief introduction to the sed and awk text processing utilities. We will deal with only a few
basic commands here, but that will suffice for understanding simple sed and awk constructs within shell
scripts.

sed: a non−interactive text file editor

awk: a field−oriented pattern processing language with a C−like syntax

For all their differences, the two utilities share a similar invocation syntax, both use regular expressions , both
read input by default from stdin, and both output to stdout. These are well−behaved UNIX tools, and
they work together well. The output from one can be piped into the other, and their combined capabilities
give shell scripts some of the power of Perl.

One important difference between the utilities is that
while shell scripts can easily pass arguments to sed, it is
more complicated for awk (see Example 34−3 and
Example 9−19).

B.1. Sed

Sed is a non−interactive line editor. It receives text input, whether from stdin or from a file, performs
certain operations on specified lines of the input, one line at a time, then outputs the result to stdout or to a
file. Within a shell script, sed is usually one of several tool components in a pipe.

Sed determines which lines of its input that it will operate on from the address range passed to it.
[64] Specify this address range either by line number or by a pattern to match. For example, 3d signals sed to
delete line 3 of the input, and /windows/d tells sed that you want every line of the input containing a
match to "windows" deleted.

Of all the operations in the sed toolkit, we will focus primarily on the three most commonly used ones. These
are printing (to stdout), deletion, and substitution.

Table B−1. Basic sed operators

Operator Name Effect

[address−range]/p print Print [specified address
range]

[address−range]/d delete Delete [specified address
range]

s/pattern1/pattern2/ substitute Substitute pattern2 for first
instance of pattern1 in a line

Advanced Bash−Scripting Guide

Appendix B. A Sed and Awk Micro−Primer 337

[address−range]/s/pattern1/pattern2/ substitute Substitute pattern2 for first
instance of pattern1 in a
line, over
address−range

[address−range]/y/pattern1/pattern2/ transform replace any character in
pattern1 with the
corresponding character in
pattern2, over
address−range (equivalent
of tr)

g global Operate on every pattern
match within each matched
line of input

Unless the g (global) operator is appended to a
substitute command, the substitution operates only on the
first instance of a pattern match within each line.

From the command line and in a shell script, a sed operation may require quoting and certain options.

sed −e '/^$/d' $filename
The −e option causes the next string to be interpreted as an editing instruction.
(If passing only a single instruction to "sed", the "−e" is optional.)
The "strong" quotes ('') protect the RE characters in the instruction
#+ from reinterpretation as special characters by the body of the script.
(This reserves RE expansion of the instruction for sed.)
#
Operates on the text contained in file $filename.

Sed uses the −e option to specify that the following string
is an instruction or set of instructions. If there is only a
single instruction contained in the string, then this option
may be omitted.

sed −n '/xzy/p' $filename
The −n option tells sed to print only those lines matching the pattern.
Otherwise all input lines would print.
The −e option not necessary here since there is only a single editing instruction.

Table B−2. Examples

Notation Effect

8d Delete 8th line of input.

/^$/d Delete all blank lines.

1,/^$/d Delete from beginning of input up to, and
including first blank line.

/Jones/p

Advanced Bash−Scripting Guide

Appendix B. A Sed and Awk Micro−Primer 338

Print only lines containing "Jones" (with
−n option).

s/Windows/Linux/ Substitute "Linux" for first instance
of"Windows" found in each input line.

s/BSOD/stability/g Substitute "stability" for every instance
of"BSOD" found in each input line.

s/ *$// Delete all spaces at the end of every line.

s/00*/0/g Compress all consecutive sequences of zeroes
into a single zero.

/GUI/d Delete all lines containing "GUI".

s/GUI//g Delete all instances of "GUI", leaving the
remainder of each line intact.

Substituting a zero−length string for another is equivalent to deleting that string within a line of
input. This leaves the remainder of the line intact. Applying s/GUI// to the line The most
important parts of any application are its GUI and sound
effects results in

The most important parts of any application are its and sound effects

A quick way to double−space a text file is sed G
filename.

For illustrative examples of sed within shell scripts, see:

Example 34−11.
Example 34−22.
Example 12−23.
Example A−34.
Example 12−125.
Example 12−206.
Example A−77.
Example A−128.
Example 12−249.
Example 10−810.
Example 12−2911.
Example A−212.
Example 12−1013.
Example 12−914.

For a more extensive treatment of sed, check the appropriate references in the Bibliography.

Advanced Bash−Scripting Guide

Appendix B. A Sed and Awk Micro−Primer 339

B.2. Awk

Awk

Awk is a full−featured text processing language with a syntax reminiscent of C. While it possesses an
extensive set of operators and capabilities, we will cover only a couple of these here − the ones most useful
for shell scripting.

Awk breaks each line of input passed to it into fields. By default, a field is a string of consecutive characters
separated by whitespace, though there are options for changing the delimiter. Awk parses and operates on
each separate field. This makes awk ideal for handling structured text files, especially tables, data organized
into consistent chunks, such as rows and columns.

Strong quoting (single quotes) and curly brackets enclose segments of awk code within a shell script.

awk '{print $3}' $filename
Prints field #3 of file $filename to stdout.

awk '{print $1 $5 $6}' $filename
Prints fields #1, #5, and #6 of file $filename.

We have just seen the awk print command in action. The only other feature of awk we need to deal with here
is variables. Awk handles variables similarly to shell scripts, though a bit more flexibly.

{ total += ${column_number} }

This adds the value of column_number to the running total of "total". Finally, to print "total", there is an
END command block, executed after the script has processed all its input.
END { print total }

Corresponding to the END, there is a BEGIN, for a code block to be performed before awk starts processing
its input.

For examples of awk within shell scripts, see:

Example 11−81.
Example 16−52.
Example 12−243.
Example 34−34.
Example 9−195.
Example 11−126.
Example 28−17.
Example 28−28.
Example 10−39.
Example 12−3410.
Example 9−2211.
Example 12−312.
Example 9−1013.

That's all the awk we'll cover here, folks, but there's lots more to learn. See the appropriate references in the
Bibliography.

Advanced Bash−Scripting Guide

B.2. Awk 340

Appendix C. Exit Codes With Special Meanings

Table C−1. "Reserved" Exit Codes

Exit Code Number Meaning Example Comments

1 catchall for general errors let "var1 = 1/0" miscellaneous errors, such
as "divide by zero"

2 misuse of shell builtins,
according to Bash
documentation

Seldom seen, usually
defaults to exit code 1

126 command invoked cannot
execute

permission problem or
command is not an
executable

127 "command not found" possible problem with
$PATH or a typo

128 invalid argument to exit exit 3.14159 exit takes only integer args
in the range 0 − 255

128+n fatal error signal "n" kill −9 $PPIDof script $? returns 137 (128 + 9)

130 script terminated by
Control−C

Control−C is fatal error
signal 2, (130 = 128 + 2,
see above)

255 exit status out of range exit −1 exit takes only integer args
in the range 0 − 255

According to the table, exit codes 1 − 2, 126 − 165, and 255 have special meanings, and should therefore be
avoided as user−specified exit parameters. Ending a script with exit 127 would certainly cause confusion
when troubleshooting (is the error a "command not found" or a user−defined one?). However, many scripts
use an exit 1 as a general bailout upon error. Since exit code 1 signifies so many possible errors, this might
not add any additional ambiguity, but, on the other hand, it probably would not be very informative either.

There has been an attempt to systematize exit status numbers (see /usr/include/sysexits.h), but
this is intended mostly for C and C++ programmers. It would be well to support a similar standard for scripts.
The author of this document proposes restricting user−defined exit codes to the range 64 − 113 (in addition to
0, for success), to conform with the C/C++ standard. This would still leave 50 valid codes, and make
troubleshooting scripts more straightforward.

All user−defined exit codes in the accompanying examples to this document now conform to this standard,
except where overriding circumstances exist, as in Example 9−2.

Issuing a $? from the command line after a shell script
exits gives results consistent with the table above only
from the Bash or sh prompt. Running the C−shell or
tcsh may give different values in some cases.

Advanced Bash−Scripting Guide

Appendix C. Exit Codes With Special Meanings 341

Appendix D. A Detailed Introduction to I/O and I/O
Redirection

written by Stephane Chazelas, and revised by the document author

A command expects the first three file descriptors to be available. The first, fd 0 (standard input, stdin), is
for reading. The other two (fd 1, stdout and fd 2, stderr) are for writing.

There is a stdin, stdout, and a stderr associated with each command. ls 2>&1 means temporarily
connecting the stderr of the ls command to the same "resource" as the shell's stdout.

By convention, a command reads its input from fd 0 (stdin), prints normal output to fd 1 (stdout), and
error ouput to fd 2 (stderr). If one of those three fd's is not open, you may encounter problems:

bash$ cat /etc/passwd >&−
cat: standard output: Bad file descriptor

For example, when xterm runs, it first initializes itself. Before running the user's shell, xterm opens the
terminal device (/dev/pts/<n> or something similar) three times.

At this point, Bash inherits these three file descriptors, and each command (child process) run by Bash
inherits them in turn, except when you redirect the command. Redirection means reassigning one of the file
descriptors to another file (or a pipe, or anything permissable). File descriptors may be reassigned locally (for
a command, a command group, a subshell, a while or if or case or for loop...), or globally, for the remainder
of the shell (using exec).

ls > /dev/null means running ls with its fd 1 connected to /dev/null.

bash$ lsof −a −p $$ −d0,1,2
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 bash 363 bozo 0u CHR 136,1 3 /dev/pts/1
 bash 363 bozo 1u CHR 136,1 3 /dev/pts/1
 bash 363 bozo 2u CHR 136,1 3 /dev/pts/1

bash$ exec 2> /dev/null
bash$ lsof −a −p $$ −d0,1,2
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 bash 371 bozo 0u CHR 136,1 3 /dev/pts/1
 bash 371 bozo 1u CHR 136,1 3 /dev/pts/1
 bash 371 bozo 2w CHR 1,3 120 /dev/null

bash$ bash −c 'lsof −a −p $$ −d0,1,2' | cat
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 lsof 379 root 0u CHR 136,1 3 /dev/pts/1
 lsof 379 root 1w FIFO 0,0 7118 pipe
 lsof 379 root 2u CHR 136,1 3 /dev/pts/1

bash$ echo "$(bash −c 'lsof −a −p $$ −d0,1,2' 2>&1)"

Advanced Bash−Scripting Guide

Appendix D. A Detailed Introduction to I/O and I/O Redirection 342

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 lsof 426 root 0u CHR 136,1 3 /dev/pts/1
 lsof 426 root 1w FIFO 0,0 7520 pipe
 lsof 426 root 2w FIFO 0,0 7520 pipe

This works for different types of redirection.

Exercise: Analyze the following script.

#! /usr/bin/env bash

mkfifo /tmp/fifo1 /tmp/fifo2
while read a; do echo "FIFO1: $a"; done < /tmp/fifo1 &
exec 7> /tmp/fifo1
exec 8> >(while read a; do echo "FD8: $a, to fd7"; done >&7)

exec 3>&1
(
 (
 (
 while read a; do echo "FIFO2: $a"; done < /tmp/fifo2 | tee /dev/stderr | tee /dev/fd/4 | tee /dev/fd/5 | tee /dev/fd/6 >&7 &
 exec 3> /tmp/fifo2

 echo 1st, to stdout
 sleep 1
 echo 2nd, to stderr >&2
 sleep 1
 echo 3rd, to fd 3 >&3
 sleep 1
 echo 4th, to fd 4 >&4
 sleep 1
 echo 5th, to fd 5 >&5
 sleep 1
 echo 6th, through a pipe | sed 's/.*/PIPE: &, to fd 5/' >&5
 sleep 1
 echo 7th, to fd 6 >&6
 sleep 1
 echo 8th, to fd 7 >&7
 sleep 1
 echo 9th, to fd 8 >&8

) 4>&1 >&3 3>&− | while read a; do echo "FD4: $a"; done 1>&3 5>&− 6>&−
) 5>&1 >&3 | while read a; do echo "FD5: $a"; done 1>&3 6>&−
) 6>&1 >&3 | while read a; do echo "FD6: $a"; done 3>&−

rm −f /tmp/fifo1 /tmp/fifo2

For each command and subshell, figure out which fd points to what.

exit 0

Appendix E. Localization

Localization is an undocumented Bash feature.

Advanced Bash−Scripting Guide

Appendix E. Localization 343

A localized shell script echoes its text output in the language defined as the system's locale. A Linux user in
Berlin, Germany, would get script output in German, whereas his cousin in Berlin, Maryland, would get
output from the same script in English.

To create a localized script, use the following template to write all messages to the user (error messages,
prompts, etc.).

#!/bin/bash
localized.sh

E_CDERROR=65

error()
{
 printf "$@" >&2
 exit $E_CDERROR
}

cd $var || error $"Can't cd to %s." "$var"
read −p $"Enter the value: " var
...

bash$ bash −D localized.sh
"Can't cd to %s."
 "Enter the value: "

This lists all the localized text. (The −D option lists double−quoted strings prefixed by a $, without executing
the script.)

bash$ bash −−dump−po−strings localized.sh
#: a:6
 msgid "Can't cd to %s."
 msgstr ""
 #: a:7
 msgid "Enter the value: "
 msgstr ""

The −−dump−po−strings option to Bash resembles the −D option, but uses gettext "po" format.

Now, build a language.po file for each language that the script will be translated into, specifying the
msgstr. As an example:

fr.po:

#: a:6
msgid "Can't cd to %s."
msgstr "Impossible de se positionner dans le répertoire %s."
#: a:7
msgid "Enter the value: "
msgstr "Entrez la valeur : "

Then, run msgfmt.

msgfmt −o localized.sh.mo fr.po

Place the resulting localized.sh.mo file in the
/usr/local/share/locale/fr/LC_MESSAGES directory, and at the beginning of the script, insert

Advanced Bash−Scripting Guide

Appendix E. Localization 344

the lines:

TEXTDOMAINDIR=/usr/local/share/locale
TEXTDOMAIN=localized.sh

If a user on a French system runs the script, she will get French messages.

With older versions of Bash or other shells, localization requires gettext, using
the −s option. In this case, the script becomes:

#!/bin/bash
localized.sh

E_CDERROR=65

error() {
 local format=$1
 shift
 printf "$(gettext −s "$format")" "$@" >&2
 exit $E_CDERROR
}
cd $var || error "Can't cd to %s." "$var"
read −p "$(gettext −s "Enter the value: ")" var
...

The TEXTDOMAIN and TEXTDOMAINDIR variables need to be exported to the environment.

−−−

This appendix written by Stephane Chazelas.

Appendix F. History Commands

The Bash shell provides command−line tools for editing and manipulating a user's command history. This is
primarily a convenience, a means of saving keystrokes.

Bash history commands:

history1.
fc2.

bash$ history
 1 mount /mnt/cdrom
 2 cd /mnt/cdrom
 3 ls
 ...

Internal variables associated with Bash history commands:

Advanced Bash−Scripting Guide

Appendix F. History Commands 345

$HISTCMD 1.
$HISTCONTROL 2.
$HISTIGNORE 3.
$HISTFILE 4.
$HISTFILESIZE 5.
$HISTSIZE 6.
!! 7.
!$ 8.
!# 9.
!N 10.
!−N 11.
!STRING 12.
!?STRING? 13.
^STRING^string^ 14.

Unfortunately, the Bash history tools find no use in scripting.

#!/bin/bash
history.sh
Attempt to use 'history' command in a script.

history

Script produces no output.
History commands do not work within a script.

bash$./history.sh
(no output)

Appendix G. A Sample .bashrc File

The ~/.bashrc file determines the behavior of interactive shells. A good look at this file can lead to a
better understanding of Bash.

Emmanuel Rouat contributed the following very elaborate .bashrc file, written for a Linux system. He
welcomes reader feedback on it.

Study the file carefully, and feel free to reuse code snippets and functions from it in your own .bashrc file
or even in your scripts.

Example G−1. Sample .bashrc file

#===
#
PERSONAL $HOME/.bashrc FILE for bash−2.05 (or later)
#
This file is read (normally) by interactive shells only.
Here is the place to define your aliases, functions and
other interactive features like your prompt.
#

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 346

mailto:emmanuel.rouat@wanadoo.fr

This file was designed (originally) for Solaris.
−−> Modified for Linux.
This bashrc file is a bit overcrowded − remember it is just
just an example. Tailor it to your needs
#
#===

−−> Comments added by HOWTO author.

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Source global definitions (if any)
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

if [−f /etc/bashrc]; then
 . /etc/bashrc # −−> Read /etc/bashrc, if present.
fi

#−−−
Automatic setting of $DISPLAY (if not set already)
This works for linux and solaris − your mileage may vary....
#−−−

if [−z ${DISPLAY:=""}]; then
 DISPLAY=$(who am i)
 DISPLAY=${DISPLAY%%\!*}
 if [−n "$DISPLAY"]; then
 export DISPLAY=$DISPLAY:0.0
 else
 export DISPLAY=":0.0" # fallback
 fi
fi

#−−−−−−−−−−−−−−−
Some settings
#−−−−−−−−−−−−−−−

set −o notify
set −o noclobber
set −o ignoreeof
set −o nounset
#set −o xtrace # useful for debuging

shopt −s cdspell
shopt −s cdable_vars
shopt −s checkhash
shopt −s checkwinsize
shopt −s mailwarn
shopt −s sourcepath
shopt −s no_empty_cmd_completion
shopt −s histappend histreedit
shopt −s extglob # useful for programmable completion

#−−−−−−−−−−−−−−−−−−−−−−−
Greeting, motd etc...
#−−−−−−−−−−−−−−−−−−−−−−−

Define some colors first:
red='\e[0;31m'
RED='\e[1;31m'
blue='\e[0;34m'
BLUE='\e[1;34m'
cyan='\e[0;36m'

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 347

CYAN='\e[1;36m'
NC='\e[0m' # No Color
−−> Nice. Has the same effect as using "ansi.sys" in DOS.

Looks best on a black background.....
echo −e "${CYAN}This is BASH ${RED}${BASH_VERSION%.*}${CYAN} − DISPLAY on ${RED}$DISPLAY${NC}\n"
date
if [−x /usr/games/fortune]; then
 /usr/games/fortune −s # makes our day a bit more fun.... :−)
fi

function _exit() # function to run upon exit of shell
{
 echo −e "${RED}Hasta la vista, baby${NC}"
}
trap _exit 0

#−−−−−−−−−−−−−−−
Shell prompt
#−−−−−−−−−−−−−−−

function fastprompt()
{
 unset PROMPT_COMMAND
 case $TERM in
 *term | rxvt)
 PS1="[\h] \W > \[\033]0;[\u@\h] \w\007\]" ;;
 *)
 PS1="[\h] \W > " ;;
 esac
}

function powerprompt()
{
 _powerprompt()
 {
 LOAD=$(uptime|sed −e "s/.*: \([^,]*\).*/\1/" −e "s/ //g")
 TIME=$(date +%H:%M)
 }

 PROMPT_COMMAND=_powerprompt
 case $TERM in
 *term | rxvt)
 PS1="${cyan}[\$TIME \$LOAD]$NC\n[\h \#] \W > \[\033]0;[\u@\h] \w\007\]" ;;
 linux)
 PS1="${cyan}[\$TIME − \$LOAD]$NC\n[\h \#] \w > " ;;
 *)
 PS1="[\$TIME − \$LOAD]\n[\h \#] \w > " ;;
 esac
}

powerprompt # this is the default prompt − might be slow
 # If too slow, use fastprompt instead....

#===
#
ALIASES AND FUNCTIONS
#
Arguably, some functions defined here are quite big
(ie 'lowercase') but my workstation has 512Meg of RAM, so
If you want to make this file smaller, these functions can
be converted into scripts.

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 348

#
Many functions were taken (almost) straight from the bash−2.04
examples.
#
#===

#−−−−−−−−−−−−−−−−−−−
Personnal Aliases
#−−−−−−−−−−−−−−−−−−−

alias rm='rm −i'
alias cp='cp −i'
alias mv='mv −i'
−> Prevents accidentally clobbering files.

alias h='history'
alias j='jobs −l'
alias r='rlogin'
alias which='type −all'
alias ..='cd ..'
alias path='echo −e ${PATH//:/\\n}'
alias print='/usr/bin/lp −o nobanner −d $LPDEST' # Assumes LPDEST is defined
alias pjet='enscript −h −G −fCourier9 −d $LPDEST' # Pretty−print using enscript
alias background='xv −root −quit −max −rmode 5' # put a picture in the background
alias vi='vim'
alias du='du −h'
alias df='df −kh'

The 'ls' family (this assumes you use the GNU ls)
alias ls='ls −hF −−color' # add colors for filetype recognition
alias lx='ls −lXB' # sort by extension
alias lk='ls −lSr' # sort by size
alias la='ls −Al' # show hidden files
alias lr='ls −lR' # recursice ls
alias lt='ls −ltr' # sort by date
alias lm='ls −al |more' # pipe through 'more'
alias tree='tree −Cs' # nice alternative to 'ls'

tailoring 'less'
alias more='less'
export PAGER=less
export LESSCHARSET='latin1'
export LESSOPEN='|/usr/bin/lesspipe.sh %s 2>&−' # Use this if lesspipe.sh exists
export LESS='−i −N −w −z−4 −g −e −M −X −F −R −P%t?f%f \
:stdin .?pb%pb\%:?lbLine %lb:?bbByte %bb:−...'

spelling typos − highly personnal :−)
alias xs='cd'
alias vf='cd'
alias moer='more'
alias moew='more'
alias kk='ll'

#−−−−−−−−−−−−−−−−
a few fun ones
#−−−−−−−−−−−−−−−−

function xtitle ()
{
 case $TERM in
 *term | rxvt)

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 349

 echo −n −e "\033]0;$*\007" ;;
 *) ;;
 esac
}

aliases...
alias top='xtitle Processes on $HOST && top'
alias make='xtitle Making $(basename $PWD) ; make'
alias ncftp="xtitle ncFTP ; ncftp"

.. and functions
function man ()
{
 xtitle The $(basename $1|tr −d .[:digit:]) manual
 man −a "$*"
}

function ll(){ ls −l "$@"| egrep "^d" ; ls −lXB "$@" 2>&−| egrep −v "^d|total "; }
function xemacs() { { command xemacs −private $* 2>&− & } && disown ;}
function te() # wrapper around xemacs/gnuserv
{
 if ["$(gnuclient −batch −eval t 2>&−)" == "t"]; then
 gnuclient −q "$@";
 else
 (xemacs "$@" &);
 fi
}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
File & strings related functions:
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function ff() { find . −name '*'$1'*' ; } # find a file
function fe() { find . −name '*'$1'*' −exec $2 {} \; ; } # find a file and run $2 on it
function fstr() # find a string in a set of files
{
 if ["$#" −gt 2]; then
 echo "Usage: fstr \"pattern\" [files] "
 return;
 fi
 SMSO=$(tput smso)
 RMSO=$(tput rmso)
 find . −type f −name "${2:−*}" −print | xargs grep −sin "$1" | \
sed "s/$1/$SMSO1RMSO/gI"
}

function cuttail() # cut last n lines in file, 10 by default
{
 nlines=${2:−10}
 sed −n −e :a −e "1,${nlines}!{P;N;D;};N;ba" $1
}

function lowercase() # move filenames to lowercase
{
 for file ; do
 filename=${file##*/}
 case "$filename" in
 /) dirname==${file%/*} ;;
 *) dirname=.;;
 esac
 nf=$(echo $filename | tr A−Z a−z)
 newname="${dirname}/${nf}"

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 350

 if ["$nf" != "$filename"]; then
 mv "$file" "$newname"
 echo "lowercase: $file −−> $newname"
 else
 echo "lowercase: $file not changed."
 fi
 done
}

function swap() # swap 2 filenames around
{
 local TMPFILE=tmp.$$
 mv $1 $TMPFILE
 mv $2 $1
 mv $TMPFILE $2
}

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Process/system related functions:
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

function my_ps() { ps $@ −u $USER −o pid,%cpu,%mem,bsdtime,command ; }
function pp() { my_ps f | awk '!/awk/ && $0~var' var=${1:−".*"} ; }

This function is roughly the same as 'killall' on linux
but has no equivalent (that I know of) on Solaris
function killps() # kill by process name
{
 local pid pname sig="−TERM" # default signal
 if ["$#" −lt 1] || ["$#" −gt 2]; then
 echo "Usage: killps [−SIGNAL] pattern"
 return;
 fi
 if [$# = 2]; then sig=$1 ; fi
 for pid in $(my_ps| awk '!/awk/ && $0~pat { print $1 }' pat=${!#}) ; do
 pname=$(my_ps | awk '$1~var { print $5 }' var=$pid)
 if ask "Kill process $pid <$pname> with signal $sig?"
 then kill $sig $pid
 fi
 done
}

function my_ip() # get IP adresses
{
 MY_IP=$(/sbin/ifconfig ppp0 | awk '/inet/ { print $2 } ' | sed −e s/addr://)
 MY_ISP=$(/sbin/ifconfig ppp0 | awk '/P−t−P/ { print $3 } ' | sed −e s/P−t−P://)
}

function ii() # get current host related info
{
 echo −e "\nYou are logged on ${RED}$HOST"
 echo −e "\nAdditionnal information:$NC " ; uname −a
 echo −e "\n${RED}Users logged on:$NC " ; w −h
 echo −e "\n${RED}Current date :$NC " ; date
 echo −e "\n${RED}Machine stats :$NC " ; uptime
 echo −e "\n${RED}Memory stats :$NC " ; free
 my_ip 2>&− ;
 echo −e "\n${RED}Local IP Address :$NC" ; echo ${MY_IP:−"Not connected"}
 echo −e "\n${RED}ISP Address :$NC" ; echo ${MY_ISP:−"Not connected"}
 echo
}

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 351

Misc utilities:

function repeat() # repeat n times command
{
 local i max
 max=$1; shift;
 for ((i=1; i <= max ; i++)); do # −−> C−like syntax
 eval "$@";
 done
}

function ask()
{
 echo −n "$@" '[y/n] ' ; read ans
 case "$ans" in
 y*|Y*) return 0 ;;
 *) return 1 ;;
 esac
}

#===
#
PROGRAMMABLE COMPLETION − ONLY SINCE BASH−2.04
(Most are taken from the bash 2.05 documentation)
You will in fact need bash−2.05 for some features
#
#===

if ["${BASH_VERSION%.*}" \< "2.05"]; then
 echo "You will need to upgrade to version 2.05 for programmable completion"
 return
fi

shopt −s extglob # necessary
set +o nounset # otherwise some completions will fail

complete −A hostname rsh rcp telnet rlogin r ftp ping disk
complete −A command nohup exec eval trace gdb
complete −A command command type which
complete −A export printenv
complete −A variable export local readonly unset
complete −A enabled builtin
complete −A alias alias unalias
complete −A function function
complete −A user su mail finger

complete −A helptopic help # currently same as builtins
complete −A shopt shopt
complete −A stopped −P '%' bg
complete −A job −P '%' fg jobs disown

complete −A directory mkdir rmdir
complete −A directory −o default cd

complete −f −d −X '*.gz' gzip
complete −f −d −X '*.bz2' bzip2
complete −f −o default −X '!*.gz' gunzip
complete −f −o default −X '!*.bz2' bunzip2
complete −f −o default −X '!*.pl' perl perl5
complete −f −o default −X '!*.ps' gs ghostview ps2pdf ps2ascii

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 352

complete −f −o default −X '!*.dvi' dvips dvipdf xdvi dviselect dvitype
complete −f −o default −X '!*.pdf' acroread pdf2ps
complete −f −o default −X '!*.+(pdf|ps)' gv
complete −f −o default −X '!*.texi*' makeinfo texi2dvi texi2html texi2pdf
complete −f −o default −X '!*.tex' tex latex slitex
complete −f −o default −X '!*.lyx' lyx
complete −f −o default −X '!*.+(jpg|gif|xpm|png|bmp)' xv gimp
complete −f −o default −X '!*.mp3' mpg123
complete −f −o default −X '!*.ogg' ogg123

This is a 'universal' completion function − it works when commands have
a so−called 'long options' mode , ie: 'ls −−all' instead of 'ls −a'
_universal_func ()
{
 case "$2" in
 −*) ;;
 *) return ;;
 esac

 case "$1" in
 \~*) eval cmd=$1 ;;
 *) cmd="$1" ;;
 esac
 COMPREPLY=($("$cmd" −−help | sed −e '/−−/!d' −e 's/.*−−\([^]*\).*/−−\1/'| \
grep ^"$2" |sort −u))
}
complete −o default −F _universal_func ldd wget bash id info

_make_targets ()
{
 local mdef makef gcmd cur prev i

 COMPREPLY=()
 cur=${COMP_WORDS[COMP_CWORD]}
 prev=${COMP_WORDS[COMP_CWORD−1]}

 # if prev argument is −f, return possible filename completions.
 # we could be a little smarter here and return matches against
 # `makefile Makefile *.mk', whatever exists
 case "$prev" in
 −*f) COMPREPLY=($(compgen −f $cur)); return 0;;
 esac

 # if we want an option, return the possible posix options
 case "$cur" in
 −) COMPREPLY=(−e −f −i −k −n −p −q −r −S −s −t); return 0;;
 esac

 # make reads `makefile' before `Makefile'
 if [−f makefile]; then
 mdef=makefile
 elif [−f Makefile]; then
 mdef=Makefile
 else
 mdef=*.mk # local convention
 fi

 # before we scan for targets, see if a makefile name was specified
 # with −f
 for ((i=0; i < ${#COMP_WORDS[@]}; i++)); do

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 353

 if [[${COMP_WORDS[i]} == −*f]]; then
 eval makef=${COMP_WORDS[i+1]} # eval for tilde expansion
 break
 fi
 done

 [−z "$makef"] && makef=$mdef

 # if we have a partial word to complete, restrict completions to
 # matches of that word
 if [−n "$2"]; then gcmd='grep "^$2"' ; else gcmd=cat ; fi

 # if we don't want to use *.mk, we can take out the cat and use
 # test −f $makef and input redirection
 COMPREPLY=($(cat $makef 2>/dev/null | awk 'BEGIN {FS=":"} /^[^.#][^=]*:/ {print $1}' | tr −s ' ' '\012' | sort −u | eval $gcmd))
}

complete −F _make_targets −X '+($*|*.[cho])' make gmake pmake

_configure_func ()
{
 case "$2" in
 −*) ;;
 *) return ;;
 esac

 case "$1" in
 \~*) eval cmd=$1 ;;
 *) cmd="$1" ;;
 esac

 COMPREPLY=($("$cmd" −−help | awk '{if ($1 ~ /−−.*/) print $1}' | grep ^"$2" | sort −u))
}

complete −F _configure_func configure

cvs(1) completion
_cvs ()
{
 local cur prev
 COMPREPLY=()
 cur=${COMP_WORDS[COMP_CWORD]}
 prev=${COMP_WORDS[COMP_CWORD−1]}

 if [$COMP_CWORD −eq 1] || ["${prev:0:1}" = "−"]; then
 COMPREPLY=($(compgen −W 'add admin checkout commit diff \
 export history import log rdiff release remove rtag status \
 tag update' $cur))
 else
 COMPREPLY=($(compgen −f $cur))
 fi
 return 0
}
complete −F _cvs cvs

_killall ()
{
 local cur prev
 COMPREPLY=()
 cur=${COMP_WORDS[COMP_CWORD]}

Advanced Bash−Scripting Guide

Appendix G. A Sample .bashrc File 354

 # get a list of processes (the first sed evaluation
 # takes care of swapped out processes, the second
 # takes care of getting the basename of the process)
 COMPREPLY=($(/usr/bin/ps −u $USER −o comm | \
 sed −e '1,1d' −e 's#[]\[]##g' −e 's#^.*/##'| \
 awk '{if ($0 ~ /^'$cur'/) print $0}'))

 return 0
}

complete −F _killall killall killps

Local Variables:
mode:shell−script
sh−shell:bash
End:

Appendix H. Converting DOS Batch Files to Shell Scripts

Quite a number of programmers learned scripting on a PC running DOS. Even the crippled DOS batch file
language allowed writing some fairly powerful scripts and applications, though they often required extensive
kludges and workarounds. Occasionally, the need still arises to convert an old DOS batch file to a UNIX shell
script. This is generally not difficult, as DOS batch file operators are only a limited subset of the equivalent
shell script ones.

Table H−1. Batch file keywords / variables / operators, and their shell equivalents

Batch File Operator Shell Script Equivalent Meaning

% $ command−line parameter prefix

/ − command option flag

\ / directory path separator

== = (equal−to) string comparison test

!==! != (not equal−to) string comparison
test

| | pipe

@ set +v do not echo current command

* * filename "wild card"

> > file redirection (overwrite)

>> >> file redirection (append)

< < redirect stdin

%VAR% $VAR environmental variable

REM # comment

NOT ! negate following test

NUL /dev/null

Advanced Bash−Scripting Guide

Appendix H. Converting DOS Batch Files to Shell Scripts 355

"black hole" for burying command
output

ECHO echo echo (many more option in Bash)

ECHO. echo echo blank line

ECHO OFF set +v do not echo command(s) following

FOR %%VAR IN (LIST) DO for var in [list]; do "for" loop

:LABEL none (unnecessary) label

GOTO none (use a function) jump to another location in the
script

PAUSE sleep pause or wait an interval

CHOICE case or select menu choice

IF if if−test

IF EXIST FILENAME if [−e filename] test if file exists

IF !%N==! if [−z "$N"] if replaceable parameter "N" not
present

CALL source or . (dot operator) "include" another script

COMMAND /C source or . (dot operator) "include" another script (same as
CALL)

SET export set an environmental variable

SHIFT shift left shift command−line argument
list

SGN −lt or −gt sign (of integer)

ERRORLEVEL $? exit status

CON stdin "console" (stdin)

PRN /dev/lp0 (generic) printer device

LPT1 /dev/lp0 first printer device

COM1 /dev/ttyS0 first serial port

Batch files usually contain DOS commands. These must be translated into their UNIX equivalents in order to
convert a batch file into a shell script.

Table H−2. DOS Commands and Their UNIX Equivalents

DOS Command UNIX Equivalent Effect

ASSIGN ln link file or directory

ATTRIB chmod change file
permissions

CD cd change directory

Advanced Bash−Scripting Guide

Appendix H. Converting DOS Batch Files to Shell Scripts 356

CHDIR cd change directory

CLS clear clear screen

COMP diff, comm, cmp file compare

COPY cp file copy

Ctl−C Ctl−C break (signal)

Ctl−Z Ctl−D EOF (end−of−file)

DEL rm delete file(s)

DELTREE rm −rf delete directory
recursively

DIR ls −l directory listing

ERASE rm delete file(s)

EXIT exit exit current process

FC comm, cmp file compare

FIND grep find strings in files

MD mkdir make directory

MKDIR mkdir make directory

MORE more text file paging filter

MOVE mv move

PATH $PATH path to executables

REN mv rename (move)

RENAME mv rename (move)

RD rmdir remove directory

RMDIR rmdir remove directory

SORT sort sort file

TIME date display system time

TYPE cat output file to stdout

XCOPY cp (extended) file copy

Virtually all UNIX and shell operators and commands have
many more options and enhancements than their DOS and
batch file equivalents. Many DOS batch files rely on
auxiliary utilities, such as ask.com, a crippled counterpart
to read.

DOS supports a very limited and incompatible subset of
filename wildcard expansion, recognizing only the * and
? characters.

Advanced Bash−Scripting Guide

Appendix H. Converting DOS Batch Files to Shell Scripts 357

Converting a DOS batch file into a shell script is generally straightforward, and the result ofttimes reads
better than the original.

Example H−1. VIEWDATA.BAT: DOS Batch File

REM VIEWDATA

REM INSPIRED BY AN EXAMPLE IN "DOS POWERTOOLS"
REM BY PAUL SOMERSON

@ECHO OFF

IF !%1==! GOTO VIEWDATA
REM IF NO COMMAND−LINE ARG...
FIND "%1" C:\BOZO\BOOKLIST.TXT
GOTO EXIT0
REM PRINT LINE WITH STRING MATCH, THEN EXIT.

:VIEWDATA
TYPE C:\BOZO\BOOKLIST.TXT | MORE
REM SHOW ENTIRE FILE, 1 PAGE AT A TIME.

:EXIT0

The script conversion is somewhat of an improvement.

Example H−2. viewdata.sh: Shell Script Conversion of VIEWDATA.BAT

#!/bin/bash
Conversion of VIEWDATA.BAT to shell script.

DATAFILE=/home/bozo/datafiles/book−collection.data
ARGNO=1

@ECHO OFF Command unnecessary here.

if [$# −lt "$ARGNO"] # IF !%1==! GOTO VIEWDATA
then
 less $DATAFILE # TYPE C:\MYDIR\BOOKLIST.TXT | MORE
else
 grep "$1" $DATAFILE # FIND "%1" C:\MYDIR\BOOKLIST.TXT
fi

exit 0 # :EXIT0

GOTOs, labels, smoke−and−mirrors, and flimflam unnecessary.
The converted script is short, sweet, and clean,
which is more than can be said for the original.

Ted Davis' Shell Scripts on the PC site has a set of comprehensive tutorials on the old−fashioned art of batch
file programming. Certain of his ingenious techniques could conceivably have relevance for shell scripts.

Advanced Bash−Scripting Guide

Appendix H. Converting DOS Batch Files to Shell Scripts 358

http://www.maem.umr.edu/~batch/

Appendix I. Exercises

Write a script to carry out each of the following tasks.

Easy

Home Directory Listing

Perform a recursive directory listing on the user's home directory and save the information to a file.
Compress the file, have the script prompt the user to insert a floppy, then press ENTER. Finally,
save the file to the floppy.

Converting for loops to while and until loops

Convert the for loops in Example 10−1 to while loops. Hint: store the data in an array and step
through the array elements.

Having already done the "heavy lifting", now convert the loops in the example to until loops.

Primes

Print (to stdout) all prime numbers between 60000 and 63000. The output should be nicely formatted
in columns (hint: use printf).

Unique System ID

Generate a "unique" 6−digit hexadecimal identifier for your computer. Do not use the flawed
hostid command. Hint: md5sum /etc/passwd, then select the first 6 digits of output.

Backup

Archive as a "tarball" (*.tar.gz file) all the files in your home directory tree
(/home/your−name) that have been modified in the last 24 hours. Hint: use find.

Safe Delete

Write, as a script, a "safe" delete command, srm.sh. Filenames passed as command−line arguments
to this script are not deleted, but instead gzipped and moved to a
/home/username/trash directory. At invocation, the script checks the "trash" directory for files
older than 48 hours and deletes them.

Medium

Managing Disk Space

List, one at a time, all files larger than 100K in the /home/username directory tree. Give the user
the option to delete or compress the file, then proceed to show the next one. Write to a logfile the
names of all deleted files and the deletion times.

Making Change

Advanced Bash−Scripting Guide

Appendix I. Exercises 359

What is the most efficient way to make change for $1.68, using only coins in common circulations
(up to 25c)? It's 6 quarters, 1 dime, a nickel, and three cents.

Given any arbitrary command line input in dollars and cents ($*.??), calculate the change, using the
minimum number of coins. If your home country is not the United States, you may use your local
currency units instead. The script will need to parse the command line input, then change it to
multiples of the smallest monetary unit (cents or whatever). Hint: look at Example 23−4.

Lucky Numbers

A "lucky number" is one whose individual digits add up to 7, in successive additions. For example,
62431 is a "lucky number" (6 + 2 + 4 + 3 + 1 = 16, 1 + 6 = 7). Find all the "lucky numbers" between
1000 and 10000.

Alphabetizing a String

Alphabetize (in ASCII order) an arbitrary string read from the command line.

Parsing

Parse /etc/passwd, and output its contents in nice, easy−to−read tabular form.

Pretty−Printing a Data File

Certain database and spreadsheet packages use save−files with comma−separated values (CSVs).
Other applications often need to parse these files.

Given a data file with comma−separated fields, of the form:

Jones,Bill,235 S. Williams St.,Denver,CO,80221,(303) 244−7989
Smith,Tom,404 Polk Ave.,Los Angeles,CA,90003,(213) 879−5612
...

Reformat the data and print it out to stdout in labeled, evenly−spaced columns.

Difficult

Logging File Accesses

Log all accesses to the files in /etc during the course of a single day. This information should
include the filename, user name, and access time. If any alterations to the files take place, that should
be flagged. Write this data as neatly formatted records in a logfile.

Strip Comments

Strip all comments from a shell script whose name is specified on the command line. Note that the
"#! line" must not be stripped out.

HTML Conversion

Convert a given text file to HTML. This non−interactive script automatically inserts all appropriate
HTML tags into a file specified as an argument.

Advanced Bash−Scripting Guide

Appendix I. Exercises 360

Strip HTML Tags

Strip all HTML tags from a specified HTML file, then reformat it into lines between 60 and 75
characters in length. Reset paragraph and block spacing, as appropriate, and convert HTML tables to
their approximate text equivalent.

Hex Dump

Do a hex(adecimal) dump on a binary file specified as an argument. The output should be in neat
tabular fields, with the first field showing the address, each of the next 8 fields a 4−byte hex number,
and the final field the ASCII equivalent of the previous 8 fields.

Determinant

Solve a 4 x 4 determinant.

Hidden Words

Write a "word−find" puzzle generator, a script that hides 10 input words in a 10 x 10 matrix of
random letters. The words may be hidden across, down, or diagonally.

Anagramming

Anagram 4−letter input. For example, the anagrams of word are: do or rod row word. You may use
/usr/share/dict/linux.words as the reference list.

Please do not send the author your solutions to these exercises. There are better ways to impress him with
your cleverness, such as submitting bugfixes and suggestions for improving this book.

Appendix J. Copyright

The "Advanced Bash−Scripting Guide" is copyright, (c) 2000, by Mendel Cooper. This document may only
be distributed subject to the terms and conditions set forth in the LDP License These are very liberal terms,
and they should not hinder any legitimate distribution or use of this book. The author especially encourages
the use of this book, or portions thereof, for instructional purposes.

Hyun Jin Cha has done a Korean translation of an earlier version of this book. Spanish, Portuguese, and
French translations are underway. If you wish to translate this document into another language, please feel
free to do so, subject to the terms stated above. The author would appreciate being notified of such efforts.

If this document is printed as a hard−copy book, the author requests a courtesy copy. This is a request, not a
requirement.

Notes

[1]
These are referred to as builtins, features internal to the shell.

[2]
Many of the features of ksh88, and even a few from the updated ksh93 have been merged into Bash.

Advanced Bash−Scripting Guide

Appendix J. Copyright 361

http://www.linuxdoc.org/manifesto.html
http://kldp.org/HOWTO/html/Adv-Bash-Scr-HOWTO/index.html

[3] By convention, user−written shell scripts that are Bourne shell compliant generally take a name with a
.sh extension. System scripts, such as those found in /etc/rc.d, do not follow this guideline.

[4]
Some flavors of UNIX (those based on 4.2BSD) take a four−byte magic number, requiring a blank
after the !, #! /bin/sh.

[5]
The #! line in a shell script will be the first thing the command interpreter (sh or bash) sees. Since this
line begins with a #, it will be correctly interpreted as a comment when the command interpreter finally
executes the script. The line has already served its purpose − calling the command interpreter.

[6]
This allows some cute tricks.

#!/bin/rm
Self−deleting script.

Nothing much seems to happen when you run this... except that the file disappears.

WHATEVER=65

echo "This line will never print (betcha!)."

exit $WHATEVER # Doesn't matter. The script will not exit here.

Also, try starting a README file with a #!/bin/more, and making it executable. The result is a
self−listing documentation file.

[7]
Portable Operating System Interface, an attempt to standardize UNIX−like OSes.

[8]
Caution: invoking a Bash script by sh scriptname turns off Bash−specific extensions, and the
script may therefore fail to execute.

[9]
A script needs read, as well as execute permission for it to run, since the shell needs to be able to read
it.

[10]
Why not simply invoke the script with scriptname ? If the directory you are in ($PWD) is where
scriptname is located, why doesn't this work? This fails because, for security reasons, the current
directory, "." is not included in a user's $PATH. It is therefore necessary to explicitly invoke the script
in the current directory with a ./scriptname.

[11]
The shell does the brace expansion. The command itself acts upon the result of the expansion.

[12]
Exception: a code block in braces as part of a pipe may be run as a subshell.

ls | { read firstline; read secondline; }
Error. The code block in braces runs as a subshell,
so the output of "ls" cannot be passed to variables within the block.
echo "First line is $firstline; second line is $secondline" # Will not work.

Thanks, S.C.

[13]

Advanced Bash−Scripting Guide

Appendix J. Copyright 362

The process calling the script sets the $0 parameter. By convention, this parameter is the name of the
script. See the manpage for execv.

[14]
"Word splitting", in this context, means dividing a character string into a number of separate and
discrete arguments.

[15]
Be aware that suid binaries may open security holes and that the suid flag has no effect on shell scripts.

[16]
On modern UNIX systems, the sticky bit is no longer used for files, only on directories.

[17]
As S.C. points out, in a compound test, even quoting the string variable might not suffice. [−n
"$string" −o "$a" = "$b"] may cause an error with some versions of Bash if $string is
empty. The safe way is to append an extra character to possibly empty variables, ["x$string"
!= x −o "x$a" = "x$b"] (the "x's" cancel out).

[18]
The pid of the currently running script is $$, of course.

[19]
The words "argument" and "parameter" are often used interchangeably. In the context of this
document, they have the same precise meaning, that of a variable passed to a script or function.

[20]
This applies to either command line arguments or parameters passed to a function.

[21]
If $parameter is null in a non−interactive script, it will terminate with a 127 exit status (the Bash error
code code for "command not found").

[22]
These are shell builtins, whereas other loop commands, such as while and case, are keywords.

[23]
This is either for performance reasons (builtins execute much faster than external commands, which
usually require forking off a process) or because a particular builtin needs direct access to the shell
internals.

[24]
A option is an argument that acts as a flag, switching script behaviors on or off. The argument
associated with a particular option indicates the behavior that the option (flag) switches on or off.

[25]
When a command or the shell itself initiates (or spawns) a new subprocess to carry out a task, this is
called forking. This new process is the "child", and the process that forked it off is the "parent". While
the child process is doing its work, the parent process is still running.

[26]
The C source for a number of loadable builtins is typically found in the
/usr/share/doc/bash−?.??/functions directory.

Note that the −f option to enable is not portable to all systems.

[27]
The same effect as autoload can be achieved with typeset −fu.

[28]
These are files whose names begin with a dot, such as ~/.Xdefaults. Such filenames do not show
up in a normal ls listing, and they cannot be deleted by an accidental rm −rf *. Dotfiles are generally

Advanced Bash−Scripting Guide

Appendix J. Copyright 363

used as setup and configuration files in a user's home directory.

[29]
A tar czvf ... will include dotfiles in directories below the current working directory. This is an
undocumented tar "feature".

[30]
This is a symmetric block cipher, used to encrypt files on a single system or local network, as opposed
to the "public key" cipher class, of which pgp is a well−known example.

[31]

A daemon is a background process not attached to a terminal session. Daemons perform designated
services either at specified times or explicitly triggered by certain events.

The word "daemon" means ghost in Greek, and there is certainly something mysterious, almost
supernatural, about the way UNIX daemons silently wander about behind the scenes, carrying out their
appointed tasks.

[32]
This is actually a script adapted from the Debian Linux distribution.

[33]
The print queue is the group of jobs "waiting in line" to be printed.

[34]
For an excellent overview of this topic, see Andy Vaught's article, Introduction to Named Pipes, in the
September, 1997 issue of Linux Journal.

[35]
EBCDIC (pronounced "ebb−sid−ic") is an acronym for Extended Binary Coded Decimal Interchange
Code. This is an IBM data format no longer in much use. A bizarre application of the
conv=ebcdic option of dd is as a quick 'n easy, but not very secure text file encoder.

cat $file | dd conv=swab,ebcdic > $file_encrypted
Encode (looks like gibberish).
Might as well switch bytes (swab), too, for a little extra obscurity.

cat $file_encrypted | dd conv=swab,ascii > $file_plaintext
Decode.

[36]
A macro is a symbolic constant that expands into a command string or a set of operations on
parameters.

[37]
This is the case on a Linux machine or a UNIX system with disk quotas.

[38]
The userdel command will fail if the particular user being deleted is still logged on.

[39]
For more detail on burning CDRs, see Alex Withers' article, Creating CDs, in the October, 1999 issue
of Linux Journal.

[40]
The −c option to mke2fs also invokes a check for bad blocks.

[41]
Operators of single−user Linux systems generally prefer something simpler for backups, such as tar.

[42]

Advanced Bash−Scripting Guide

Appendix J. Copyright 364

http://www2.linuxjournal.com/lj-issues/issue41/2156.html
http://www.linuxjournal.com
http://www2.linuxjournal.com/lj-issues/issue66/3335.html
http://www.linuxjournal.com

NAND is the logical "not−and" operator. Its effect is somewhat similar to subtraction.

[43]
For purposes of command substitution, a command may be an external system command, an internal
scripting builtin, or even a script function.

[44]
A file descriptor is simply a number that the operating system assigns to an open file to keep track of
it. Consider it a simplified version of a file pointer. It is analogous to a file handle in C.

[45]
Using file descriptor 5 might cause problems. When Bash creates a child process, as with
exec, the child inherits fd 5 (see Chet Ramey's archived e−mail, SUBJECT: RE: File descriptor 5 is
held open). Best leave this particular fd alone.

[46]
The simplest type of Regular Expression is a character string that retains its literal meaning, not
containing any metacharacters.

[47]
Since sed, awk, and grep process single lines, there will usually not be a newline to match. In those
cases where there is a newline in a multiple line expression, the dot will match the newline.

#!/bin/bash

sed −e 'N;s/.*/[&]/' << EOF # Here Document
line1
line2
EOF
OUTPUT:
[line1
line2]

echo

awk '{ $0=$1 "\n" $2; if (/line.1/) {print}}' << EOF
line 1
line 2
EOF
OUTPUT:
line
1

Thanks, S.C.

exit 0

[48]
Filename expansion can match dotfiles, but only if the pattern explicitly includes the dot.

~/[.]bashrc # Will not expand to ~/.bashrc
~/?bashrc # Neither will this.
 # Wild cards and metacharacters will not expand to a dot in globbing.

~/.[b]ashrc # Will expand to ~./bashrc
~/.ba?hrc # Likewise.
~/.bashr* # Likewise.

Advanced Bash−Scripting Guide

Appendix J. Copyright 365

http://www.geocrawler.com/archives/3/342/1996/1/0/1939805/
http://www.geocrawler.com/archives/3/342/1996/1/0/1939805/

Setting the "dotglob" option turns this off.

Thanks, S.C.

[49]
This has the same effect as a named pipe (temp file), and, in fact, named pipes were at one time used in
process substitution.

[50]
Indirect variable references (see Example 35−2) provide a clumsy sort of mechanism for passing
variable pointers to functions.

#!/bin/bash

ITERATIONS=3 # How many times to get input.
icount=1

my_read () {
 # Called with my_read varname,
 # outputs the previous value between brackets as the default value,
 # then asks for a new value.

 local local_var

 echo −n "Enter a value "
 eval 'echo −n "[$'$1'] "' # Previous value.
 read local_var
 [−n "$local_var"] && eval $1=\$local_var

 # "And−list": if "local_var" then set "$1" to its value.
}

echo

while ["$icount" −le "$ITERATIONS"]
do
 my_read var
 echo "Entry #$icount = $var"
 let "icount += 1"
 echo
done

Thanks to Stephane Chazelas for providing this instructive example.

exit 0

[51]
The return command is a Bash builtin.

[52]
Herbert Mayer defines recursion as "...expressing an algorithm by using a simpler version of that same
algorithm..." A recursive function is one that calls itself.

[53]
Too many levels of recursion may crash a script with a segfault.

#!/bin/bash

recursive_function ()
{
(($1 < $2)) && f $(($1 + 1)) $2;

Advanced Bash−Scripting Guide

Appendix J. Copyright 366

As long as 1st parameter is less than 2nd,
#+ increment 1st and recurse.
}

recursive_function 1 50000 # Recurse 50,000 levels!
Segfaults, of course.

Recursion this deep might cause even a C program to segfault,
#+ by using up all the memory allotted to the stack.

Thanks, S.C.

exit 0 # This script will not exit normally.

[54]
However, aliases do seem to expand positional parameters.

[55]
This does not apply to csh, tcsh, and other shells not related to or descended from the classic Bourne
shell (sh).

[56]
The entries in /dev provide mount points for physical and virtual devices. These entries use very little
drive space.

Some devices, such as /dev/null, /dev/zero, and /dev/urandom are virtual. They are not
actual physical devices and exist only in software.

[57]
A block device reads and/or writes data in chunks, or blocks, in contrast to a character device, which
acesses data in character units. Examples of block devices are a hard drive and CD ROM drive. An
example of a character device is a keyboard.

[58]
Certain system commands, such as procinfo, free, vmstat, lsdev, and uptime do this as well.

[59]
By convention, signal 0 is assigned to exit.

[60]
Setting the suid permission on a script has no effect.

[61]
In this context, " magic numbers" have an entirely different meaning than the magic numbers used to
designate file types.

[62]
Chet Ramey promises associative arrays (a Perl feature) in a future Bash release.

[63]
Those who can, do. Those who can't... get an MCSE.

[64]
If no address range is specified, the default is all lines.

Advanced Bash−Scripting Guide

Appendix J. Copyright 367

	Table of Contents
	Chapter 1. Why Shell Programming?
	Chapter 2. Starting Off With a Sha-Bang
	2.1. Invoking the script
	2.2. Preliminary Exercises
	Part 2. Basics

	Chapter 3. Exit and Exit Status
	Chapter 4. Special Characters
	Chapter 5. Introduction to Variables and Parameters
	5.1. Variable Substitution
	5.2. Variable Assignment
	5.3. Bash Variables Are Untyped
	5.4. Special Variable Types

	Chapter 6. Quoting
	Chapter 7. Tests
	7.1. Test Constructs
	7.2. File test operators
	7.3. Comparison operators (binary)
	7.4. Nested if/then Condition Tests
	7.5. Testing Your Knowledge of Tests

	Chapter 8. Operations and Related Topics
	8.1. Operators
	8.2. Numerical Constants
	Part 3. Beyond the Basics

	Chapter 9. Variables Revisited
	9.1. Internal Variables
	9.2. Manipulating Strings
	9.2.1. Manipulating strings using awk
	9.2.2. Further Discussion

	9.3. Parameter Substitution
	9.4. Typing variables: declare or typeset
	9.5. Indirect References to Variables
	9.6. $RANDOM: generate random integer
	9.7. The Double Parentheses Construct

	Chapter 10. Loops and Branches
	10.1. Loops
	10.2. Nested Loops
	10.3. Loop Control
	10.4. Testing and Branching

	Chapter 11. Internal Commands and Builtins
	11.1. Job Control Commands

	Chapter 12. External Filters, Programs and Commands
	12.1. Basic Commands
	12.2. Complex Commands
	12.3. Time / Date Commands
	12.4. Text Processing Commands
	12.5. File and Archiving Commands
	12.6. Communications Commands
	12.7. Terminal Control Commands
	12.8. Math Commands
	12.9. Miscellaneous Commands

	Chapter 13. System and Administrative Commands
	Chapter 14. Command Substitution
	Chapter 15. Arithmetic Expansion
	Chapter 16. I/O Redirection
	16.1. Using exec
	16.2. Redirecting Code Blocks
	16.3. Applications

	Chapter 17. Here Documents
	Chapter 18. Recess Time
	Part 4. Advanced Topics

	Chapter 19. Regular Expressions
	19.1. A Brief Introduction to Regular Expressions
	19.2. Globbing

	Chapter 20. Subshells
	Chapter 21. Restricted Shells
	Chapter 22. Process Substitution
	Chapter 23. Functions
	23.1. Complex Functions and Function Complexities
	23.2. Local Variables
	23.2.1. Local variables make recursion possible.

	Chapter 24. Aliases
	Chapter 25. List Constructs
	Chapter 26. Arrays
	Chapter 27. Files
	Chapter 28. /dev and /proc
	28.1. /dev
	28.2. /proc

	Chapter 29. Of Zeros and Nulls
	Chapter 30. Debugging
	Chapter 31. Options
	Chapter 32. Gotchas
	Chapter 33. Scripting With Style
	33.1. Unofficial Shell Scripting Stylesheet

	Chapter 34. Miscellany
	34.1. Interactive and non-interactive shells and scripts
	34.2. Shell Wrappers
	34.3. Tests and Comparisons: Alternatives
	34.4. Optimizations
	34.5. Assorted Tips
	34.6. Oddities
	34.7. Portability Issues
	34.8. Shell Scripting Under Windows

	Chapter 35. Bash, version 2
	Chapter 36. Endnotes
	36.1. Author's Note
	36.2. About the Author
	36.3. Tools Used to Produce This Book
	36.3.1. Hardware
	36.3.2. Software and Printware

	36.4. Credits
	Bibliography
	Appendix A. Contributed Scripts
	Appendix B. A Sed and Awk Micro-Primer
	B.1. Sed
	B.2. Awk
	Appendix C. Exit Codes With Special Meanings
	Appendix D. A Detailed Introduction to I/O and I/O Redirection
	Appendix E. Localization
	Appendix F. History Commands
	Appendix G. A Sample .bashrc File
	Appendix H. Converting DOS Batch Files to Shell Scripts
	Appendix I. Exercises
	Appendix J. Copyright

