
Using as

The gnu Assembler

January ����

The Free Software Foundation Inc� thanks The Nice Computer Company of Australia for
loaning Dean Elsner to write the �rst �Vax� version of as for Project gnu� The proprietors�
management and sta	 of TNCCA thank FSF for distracting the boss while they got some
work done�

Dean Elsner� Jay Fenlason � friends

Using as

Edited by Cygnus Support

Copyright c� ����� �
� ��� ��� ��� �
� ��� ���� Free Software Foundation� Inc�

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies�

Permission is granted to copy and distribute modi�ed versions of this manual under the con�
ditions for verbatim copying� provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one�

Permission is granted to copy and distribute translations of this manual into another lan�
guage� under the above conditions for modi�ed versions�

Chapter �� Overview �

� Overview

This manual is a user guide to the gnu assembler as�

Here is a brief summary of how to invoke as� For details� see Chapter
 �Comand�Line
Options�� page ��

as � �a�cdhlns���file� � � �D � � ��defsym sym�val �
� �f � � ��gstabs � � ��help � � �I dir � � �J � � �K � � �L �
� ��keep�locals � � �o obj�le � � �R � � ��statistics � � �v �
� �version � � ��version � � �W � � �w � � �x � � �Z �
� �mbig�endian � �mlittle�endian �
� �m�arm�� � �m�arm�� � �m�arm���	 � �m�arm�
 � �m�arm�� � �m�arm���t���d�m�i�� �
� �m�arm�v� � �m�arm�v�a � �m�arm�v
 � �m�arm�v
m � �m�arm�v
 � �m�arm�v
t �
� �mthumb � �mall �
� �mfpa�	 � �mfpa�� � �mfpe�old � �mno�fpu �
� �EB � �EL �
� �mapcs�
� � �mapcs��� �
� �O �
� �Av� � �Av� � �Av� � �Asparclet � �Asparclite
�Av�plus � �Av�plusa � �Av� � �Av�a �

� �xarch�v�plus � �xarch�v�plusa � � �bump � � �
� � ��
 �
� �ACA � �ACA�A � �ACB � �ACC � �AKA � �AKB � �AKC � �AMC �
� �b � � �no�relax �
� �l � � �m��			 � �m��	�	 � �m��	�	 � ��� �
� �nocpp � � �EL � � �EB � � �G num � � �mcpu�CPU �
� �mips� � � �mips� � � �mips
 � � �m
��	 � � �no�m
��	 �
� ��trap � � ��break �
� ��emulation�name �
� �� � �les � � � �

�a�cdhlmns�

Turn on listings� in any of a variety of ways�

�ac omit false conditionals

�ad omit debugging directives

�ah include high�level source

�al include assembly

�am include macro expansions

�an omit forms processing

�as include symbols

�file set the name of the listing �le

You may combine these options� for example� use ��aln� for assembly listing
without forms processing� The ��file� option� if used� must be the last one�
By itself� ��a� defaults to ��ahls��

�D Ignored� This option is accepted for script compatibility with calls to other
assemblers�

 Using as

��defsym sym�value
De�ne the symbol sym to be value before assembling the input �le� value must
be an integer constant� As in C� a leading �	x� indicates a hexadecimal value�
and a leading �	� indicates an octal value�

�f �fast��skip whitespace and comment preprocessing �assume source is compiler
output��

��gstabs Generate stabs debugging information for each assembler line� This may help
debugging assembler code� if the debugger can handle it�

��help Print a summary of the command line options and exit�

�I dir Add directory dir to the search list for �include directives�

�J Don�t warn about signed over�ow�

�K Issue warnings when di	erence tables altered for long displacements�

�L

��keep�locals

Keep �in the symbol table� local symbols� On traditional a�out systems these
start with �L�� but di	erent systems have di	erent local label pre�xes�

�o obj�le Name the object��le output from as obj�le�

�R Fold the data section into the text section�

��statistics

Print the maximum space �in bytes� and total time �in seconds� used by assem�
bly�

��strip�local�absolute

Remove local absolute symbols from the outgoing symbol table�

�v

�version Print the as version�

��version

Print the as version and exit�

�W Suppress warning messages�

�w Ignored�

�x Ignored�

�Z Generate an object �le even after errors�

�� � �les � � �

Standard input� or source �les to assemble�

The following options are available when as is con�gured for an ARC processor�

�mbig�endian

Generate �big endian� format output�

Chapter �� Overview �

�mlittle�endian

Generate �little endian� format output�

The following options are available when as is con�gured for the ARM processor family�

�m�arm�� � �m�arm�� � �m�arm���	 � �m�arm�
 � �m�arm�� � �m�arm���t���d�m� �

�m�arm�v� � �m�arm�v�a � �m�arm�v
 � �m�arm�v
m � �m�arm�v
 � �m�arm�v
t

Specify which variant of the ARM architecture is the target�

�mthumb � �mall

Enable or disable Thumb only instruction decoding�

�mfpa�	 � �mfpa�� � �mfpe�old � �mno�fpu

Select which Floating Point architcture is the target�

�mapcs�
� � �mapcs���

Select which procedure calling convention is in use�

�EB � �EL Select either big�endian ��EB� or little�endian ��EL� output�

The following options are available when as is con�gured for a D��V processor�

�O Optimize output by parallelizing instructions�

The following options are available when as is con�gured for the Intel ���
� processor�

�ACA � �ACA�A � �ACB � �ACC � �AKA � �AKB � �AKC � �AMC

Specify which variant of the �
� architecture is the target�

�b Add code to collect statistics about branches taken�

�no�relax

Do not alter compare�and�branch instructions for long displacements� error if
necessary�

The following options are available when as is con�gured for the Motorola
���� series�

�l Shorten references to unde�ned symbols� to one word instead of two�

�m��			 � �m��		� � �m��	�	 � �m��	�	 � �m��	
	 � �m��	
	 � �m��	�	

� �m��
	� � �m��

� � �m��

� � �m��

 � �m��

	 � �mcpu
� � �m��		

Specify what processor in the
���� family is the target� The default is normally
the
��
�� but this can be changed at con�guration time�

�m����� � �m����� � �mno������ � �mno������

The target machine does �or does not� have a �oating�point coprocessor� The
default is to assume a coprocessor for
��
��
����� and cpu�
� Although the
basic
���� is not compatible with the
����� a combination of the two can
be speci�ed� since it�s possible to do emulation of the coprocessor instructions
with the main processor�

�m����� � �mno������

The target machine does �or does not� have a memory�management unit co�
processor� The default is to assume an MMU for
��
� and up�

The following options are available when as is con�gured for the SPARC architecture�

� Using as

�Av� � �Av� � �Av� � �Asparclet � �Asparclite

�Av�plus � �Av�plusa � �Av� � �Av�a

Explicitly select a variant of the SPARC architecture�

��Av�plus� and ��Av�plusa� select a �
 bit environment� ��Av�� and ��Av�a�
select a
� bit environment�

��Av�plusa� and ��Av�a� enable the SPARC V� instruction set with Ultra�
SPARC extensions�

�xarch�v�plus � �xarch�v�plusa

For compatibility with the Solaris v� assembler� These options are equivalent
to �Av�plus and �Av�plusa� respectively�

�bump Warn when the assembler switches to another architecture�

The following options are available when as is con�gured for a MIPS processor�

�G num This option sets the largest size of an object that can be referenced implicitly
with the gp register� It is only accepted for targets that use ECOFF format�
such as a DECstation running Ultrix� The default value is ��

�EB Generate �big endian� format output�

�EL Generate �little endian� format output�

�mips�

�mips�

�mips
 Generate code for a particularMIPS Instruction Set Architecture level� ��mips��
corresponds to the r���� and r���� processors� ��mips�� to the r���� pro�
cessor� and ��mips
� to the r���� processor�

�m
��	

�no�m
��	

Generate code for the MIPS r���� chip� This tells the assembler to accept
the �mad� and �madu� instruction� and to not schedule �nop� instructions around
accesses to the �HI� and �LO� registers� ��no�m
��	� turns o	 this option�

�mcpu�CPU
Generate code for a particular MIPS cpu� This has little e	ect on the assembler�
but it is passed by gcc�

��emulation�name
This option causes as to emulate as con�gured for some other target� in all
respects� including output format �choosing between ELF and ECOFF only��
handling of pseudo�opcodes which may generate debugging information or store
symbol table information� and default endianness� The available con�guration
names are� �mipsecoff�� �mipself�� �mipslecoff�� �mipsbecoff�� �mipslelf��
�mipsbelf�� The �rst two do not alter the default endianness from that of the
primary target for which the assembler was con�gured� the others change the
default to little� or big�endian as indicated by the �b� or �l� in the name� Using
��EB� or ��EL� will override the endianness selection in any case�

This option is currently supported only when the primary target as is con�g�
ured for is a MIPS ELF or ECOFF target� Furthermore� the primary target

Chapter �� Overview �

or others speci�ed with ���enable�targets�� � �� at con�guration time must in�
clude support for the other format� if both are to be available� For example�
the Irix � con�guration includes support for both�

Eventually� this option will support more con�gurations� with more �ne�grained
control over the assembler�s behavior� and will be supported for more processors�

�nocpp as ignores this option� It is accepted for compatibility with the native tools�

��trap

��no�trap

��break

��no�break

Control how to deal with multiplication over�ow and division by zero� ���trap�
or ���no�break� �which are synonyms� take a trap exception �and only work
for Instruction Set Architecture level
 and higher�� ���break� or ���no�trap�
�also synonyms� and the default� take a break exception�

��� Structure of this Manual

This manual is intended to describe what you need to know to use gnu as� We cover the
syntax expected in source �les� including notation for symbols� constants� and expressions�
the directives that as understands� and of course how to invoke as�

This manual also describes some of the machine�dependent features of various �avors of
the assembler�

On the other hand� this manual is not intended as an introduction to programming
in assembly language�let alone programming in general� In a similar vein� we make no
attempt to introduce the machine architecture� we do not describe the instruction set�
standard mnemonics� registers or addressing modes that are standard to a particular archi�
tecture� You may want to consult the manufacturer�s machine architecture manual for this
information�

��� The GNU Assembler

gnu as is really a family of assemblers� If you use �or have used� the gnu assembler on
one architecture� you should �nd a fairly similar environment when you use it on another
architecture� Each version has much in common with the others� including object �le
formats� most assembler directives �often called pseudo�ops� and assembler syntax�

as is primarily intended to assemble the output of the gnu C compiler gcc for use by
the linker ld� Nevertheless� we�ve tried to make as assemble correctly everything that other
assemblers for the same machine would assemble� Any exceptions are documented explicitly
�see Chapter � �Machine Dependencies�� page ���� This doesn�t mean as always uses the
same syntax as another assembler for the same architecture� for example� we know of several
incompatible versions of
��x� assembly language syntax�

Unlike older assemblers� as is designed to assemble a source program in one pass of the
source �le� This has a subtle impact on the �org directive �see Section ���� ��org�� page ����

 Using as

��� Object File Formats

The gnu assembler can be con�gured to produce several alternative object �le formats�
For the most part� this does not a	ect how you write assembly language programs� but di�
rectives for debugging symbols are typically di	erent in di	erent �le formats� See Section ���
�Symbol Attributes�� page
��

��� Command Line

After the program name as� the command line may contain options and �le names�
Options may appear in any order� and may be before� after� or between �le names� The
order of �le names is signi�cant�

���� �two hyphens� by itself names the standard input �le explicitly� as one of the �les
for as to assemble�

Except for ���� any command line argument that begins with a hyphen ����� is an option�
Each option changes the behavior of as� No option changes the way another option works�
An option is a ��� followed by one or more letters� the case of the letter is important� All
options are optional�

Some options expect exactly one �le name to follow them� The �le name may either
immediately follow the option�s letter �compatible with older assemblers� or it may be the
next command argument �gnu standard�� These two command lines are equivalent�

as �o my�object�file�o mumble�s
as �omy�object�file�o mumble�s

��� Input Files

We use the phrase source program� abbreviated source� to describe the program input
to one run of as� The program may be in one or more �les� how the source is partitioned
into �les doesn�t change the meaning of the source�

The source program is a concatenation of the text in all the �les� in the order speci�ed�

Each time you run as it assembles exactly one source program� The source program is
made up of one or more �les� �The standard input is also a �le��

You give as a command line that has zero or more input �le names� The input �les are
read �from left �le name to right�� A command line argument �in any position� that has no
special meaning is taken to be an input �le name�

If you give as no �le names it attempts to read one input �le from the as standard input�
which is normally your terminal� You may have to type hctl�Di to tell as there is no more
program to assemble�

Use ���� if you need to explicitly name the standard input �le in your command line�

If the source is empty� as produces a small� empty object �le�

Chapter �� Overview �

Filenames and Line�numbers

There are two ways of locating a line in the input �le �or �les� and either may be used
in reporting error messages� One way refers to a line number in a physical �le� the other
refers to a line number in a �logical� �le� See Section ��� �Error and Warning Messages��
page ��

Physical �les are those �les named in the command line given to as�

Logical �les are simply names declared explicitly by assembler directives� they bear no
relation to physical �les� Logical �le names help error messages re�ect the original source
�le� when as source is itself synthesized from other �les� See Section ��� ��app�file��
page ���

��	 Output
Object� File

Every time you run as it produces an output �le� which is your assembly language
program translated into numbers� This �le is the object �le� Its default name is a�out� or
b�out when as is con�gured for the Intel ���
�� You can give it another name by using
the �o option� Conventionally� object �le names end with ��o�� The default name is used
for historical reasons� older assemblers were capable of assembling self�contained programs
directly into a runnable program� �For some formats� this isn�t currently possible� but it
can be done for the a�out format��

The object �le is meant for input to the linker ld� It contains assembled program code�
information to help ld integrate the assembled program into a runnable �le� and �optionally�
symbolic information for the debugger�

��� Error and Warning Messages

as may write warnings and error messages to the standard error �le �usually your ter�
minal�� This should not happen when a compiler runs as automatically� Warnings report
an assumption made so that as could keep assembling a �awed program� errors report a
grave problem that stops the assembly�

Warning messages have the format

file�name�NNN�Warning Message Text

�where NNN is a line number�� If a logical �le name has been given �see Section ���
��app�file�� page ��� it is used for the �lename� otherwise the name of the current input
�le is used� If a logical line number was given �see Section ���
 ��line�� page ��� then it is
used to calculate the number printed� otherwise the actual line in the current source �le is
printed� The message text is intended to be self explanatory �in the grand Unix tradition��

Error messages have the format

file�name�NNN�FATAL�Error Message Text

The �le name and line number are derived as for warning messages� The actual message
text may be rather less explanatory because many of them aren�t supposed to happen�

� Using as

Chapter
� Command�Line Options �

� Command�Line Options

This chapter describes command�line options available in all versions of the gnu as�
sembler� see Chapter � �Machine Dependencies�� page ��� for options speci�c to particular
machine architectures�

If you are invoking as via the gnu C compiler �version
�� you can use the ��Wa� option
to pass arguments through to the assembler� The assembler arguments must be separated
from each other �and the ��Wa�� by commas� For example�

gcc �c �g �O �Wa��alh��L file�c

emits a listing to standard output with high�level and assembly source�

Usually you do not need to use this ��Wa� mechanism� since many compiler command�
line options are automatically passed to the assembler by the compiler� �You can call the
gnu compiler driver with the ��v� option to see precisely what options it passes to each
compilation pass� including the assembler��

��� Enable Listings
 �a�cdhlns�

These options enable listing output from the assembler� By itself� ��a� requests high�
level� assembly� and symbols listing� You can use other letters to select speci�c options
for the list� ��ah� requests a high�level language listing� ��al� requests an output�program
assembly listing� and ��as� requests a symbol table listing� High�level listings require that a
compiler debugging option like ��g� be used� and that assembly listings ���al�� be requested
also�

Use the ��ac� option to omit false conditionals from a listing� Any lines which are not
assembled because of a false �if �or �ifdef� or any other conditional�� or a true �if followed
by an �else� will be omitted from the listing�

Use the ��ad� option to omit debugging directives from the listing�

Once you have speci�ed one of these options� you can further control listing output and
its appearance using the directives �list� �nolist� �psize� �eject� �title� and �sbttl�
The ��an� option turns o	 all forms processing� If you do not request listing output with
one of the ��a� options� the listing�control directives have no e	ect�

The letters after ��a� may be combined into one option� e�g�� ��aln��

��� �D

This option has no e	ect whatsoever� but it is accepted to make it more likely that
scripts written for other assemblers also work with as�

��� Work Faster
 �f

��f� should only be used when assembling programs written by a �trusted� compiler� ��f�
stops the assembler from doing whitespace and comment preprocessing on the input �le�s�
before assembling them� See Section ��� �Preprocessing�� page ���

Warning� if you use ��f� when the �les actually need to be preprocessed �if they
contain comments� for example�� as does not work correctly�

�� Using as

��� �include search path
 �I path

Use this option to add a path to the list of directories as searches for �les speci�ed in
�include directives �see Section ���� ��include�� page ���� You may use �I as many times
as necessary to include a variety of paths� The current working directory is always searched
�rst� after that� as searches any ��I� directories in the same order as they were speci�ed
�left to right� on the command line�

��� Di�erence Tables
 �K

as sometimes alters the code emitted for directives of the form ��word sym��sym��� see
Section ��
� ��word�� page ��� You can use the ��K� option if you want a warning issued
when this is done�

��	 Include Local Labels
 �L

Labels beginning with �L� �upper case only� are called local labels� See Section ���
�Symbol Names�� page
�� Normally you do not see such labels when debugging� because
they are intended for the use of programs �like compilers� that compose assembler programs�
not for your notice� Normally both as and ld discard such labels� so you do not normally
debug with them�

This option tells as to retain those �L� � �� symbols in the object �le� Usually if you do
this you also tell the linker ld to preserve symbols whose names begin with �L��

By default� a local label is any label beginning with �L�� but each target is allowed to
rede�ne the local label pre�x� On the HPPA local labels begin with �L��� ��� for the ARM
family�

��� Assemble in MRI Compatibility Mode
 �M

The �M or ��mri option selects MRI compatibility mode� This changes the syntax and
pseudo�op handling of as to make it compatible with the ASM��K or the ASM��	 �depending
upon the con�gured target� assembler from Microtec Research� The exact nature of the
MRI syntax will not be documented here� see the MRI manuals for more information� Note
in particular that the handling of macros and macro arguments is somewhat di	erent� The
purpose of this option is to permit assembling existing MRI assembler code using as�

The MRI compatibility is not complete� Certain operations of the MRI assembler de�
pend upon its object �le format� and can not be supported using other object �le formats�
Supporting these would require enhancing each object �le format individually� These are�

� global symbols in common section

The m
�k MRI assembler supports common sections which are merged by the linker�
Other object �le formats do not support this� as handles common sections by treating
them as a single common symbol� It permits local symbols to be de�ned within a
common section� but it can not support global symbols� since it has no way to describe
them�

Chapter
� Command�Line Options ��

� complex relocations

The MRI assemblers support relocations against a negated section address� and reloca�
tions which combine the start addresses of two or more sections� These are not support
by other object �le formats�

� END pseudo�op specifying start address

The MRI END pseudo�op permits the speci�cation of a start address� This is not
supported by other object �le formats� The start address may instead be speci�ed
using the �e option to the linker� or in a linker script�

� IDNT� �ident and NAME pseudo�ops

The MRI IDNT� �ident and NAME pseudo�ops assign a module name to the output �le�
This is not supported by other object �le formats�

� ORG pseudo�op

The m
�k MRI ORG pseudo�op begins an absolute section at a given address� This
di	ers from the usual as �org pseudo�op� which changes the location within the current
section� Absolute sections are not supported by other object �le formats� The address
of a section may be assigned within a linker script�

There are some other features of the MRI assembler which are not supported by as�
typically either because they are di�cult or because they seem of little consequence� Some
of these may be supported in future releases�

� EBCDIC strings

EBCDIC strings are not supported�

� packed binary coded decimal

Packed binary coded decimal is not supported� This means that the DC�P and DCB�P

pseudo�ops are not supported�

� FEQU pseudo�op

The m
�k FEQU pseudo�op is not supported�

� NOOBJ pseudo�op

The m
�k NOOBJ pseudo�op is not supported�

� OPT branch control options

The m
�k OPT branch control options�B� BRS� BRB� BRL� and BRW�are ignored� as

automatically relaxes all branches� whether forward or backward� to an appropriate
size� so these options serve no purpose�

� OPT list control options

The following m
�k OPT list control options are ignored� C� CEX� CL� CRE� E� G� I� M�
MEX� MC� MD� X�

� other OPT options

The following m
�k OPT options are ignored� NEST� O� OLD� OP� P� PCO� PCR� PCS� R�

� OPT D option is default

The m
�k OPT D option is the default� unlike the MRI assembler� OPT NOD may be used
to turn it o	�

�
 Using as

� XREF pseudo�op�

The m
�k XREF pseudo�op is ignored�

� �debug pseudo�op

The i�
� �debug pseudo�op is not supported�

� �extended pseudo�op

The i�
� �extended pseudo�op is not supported�

� �list pseudo�op�

The various options of the i�
� �list pseudo�op are not supported�

� �optimize pseudo�op

The i�
� �optimize pseudo�op is not supported�

� �output pseudo�op

The i�
� �output pseudo�op is not supported�

� �setreal pseudo�op

The i�
� �setreal pseudo�op is not supported�

��� Dependency tracking
 ��MD

as can generate a dependency �le for the �le it creates� This �le consists of a single rule
suitable for make describing the dependencies of the main source �le�

The rule is written to the �le named in its argument�

This feature is used in the automatic updating of make�les�

��� Name the Object File
 �o

There is always one object �le output when you run as� By default it has the name
�a�out� �or �b�out�� for Intel �
� targets only�� You use this option �which takes exactly
one �lename� to give the object �le a di	erent name�

Whatever the object �le is called� as overwrites any existing �le of the same name�

���� Join Data and Text Sections
 �R

�R tells as to write the object �le as if all data�section data lives in the text section� This
is only done at the very last moment� your binary data are the same� but data section parts
are relocated di	erently� The data section part of your object �le is zero bytes long because
all its bytes are appended to the text section� �See Chapter � �Sections and Relocation��
page
���

When you specify �R it would be possible to generate shorter address displacements
�because we do not have to cross between text and data section�� We refrain from doing
this simply for compatibility with older versions of as� In future� �R may work this way�

When as is con�gured for COFF output� this option is only useful if you use sections
named ��text� and ��data��

�R is not supported for any of the HPPA targets� Using �R generates a warning from as�

Chapter
� Command�Line Options ��

���� Display Assembly Statistics
 ��statistics

Use ���statistics� to display two statistics about the resources used by as� the max�
imum amount of space allocated during the assembly �in bytes�� and the total execution
time taken for the assembly �in cpu seconds��

���� Compatible output
 ��traditional�format

For some targets� the output of as is di	erent in some ways from the output of some
existing assembler� This switch requests as to use the traditional format instead�

For example� it disables the exception frame optimizations which as normally does by
default on gcc output�

���� Announce Version
 �v

You can �nd out what version of as is running by including the option ��v� �which you
can also spell as ��version�� on the command line�

���� Suppress Warnings
 �W

as should never give a warning or error message when assembling compiler output� But
programs written by people often cause as to give a warning that a particular assumption
was made� All such warnings are directed to the standard error �le� If you use this option�
no warnings are issued� This option only a	ects the warning messages� it does not change
any particular of how as assembles your �le� Errors� which stop the assembly� are still
reported�

���� Generate Object File in Spite of Errors
 �Z

After an error message� as normally produces no output� If for some reason you are
interested in object �le output even after as gives an error message on your program�
use the ��Z� option� If there are any errors� as continues anyways� and writes an object
�le after a �nal warning message of the form �n errors� m warnings� generating bad

object file��

�� Using as

Chapter �� Syntax ��

� Syntax

This chapter describes the machine�independent syntax allowed in a source �le� as

syntax is similar to what many other assemblers use� it is inspired by the BSD ��
 assembler�
except that as does not assemble Vax bit��elds�

��� Preprocessing

The as internal preprocessor�

� adjusts and removes extra whitespace� It leaves one space or tab before the keywords
on a line� and turns any other whitespace on the line into a single space�

� removes all comments� replacing them with a single space� or an appropriate number
of newlines�

� converts character constants into the appropriate numeric values�

It does not do macro processing� include �le handling� or anything else you may get
from your C compiler�s preprocessor� You can do include �le processing with the �include
directive �see Section ���� ��include�� page ���� You can use the gnu C compiler driver
to get other �CPP� style preprocessing� by giving the input �le a ��S� su�x� See section
�Options Controlling the Kind of Output� in Using GNU CC �

Excess whitespace� comments� and character constants cannot be used in the portions
of the input text that are not preprocessed�

If the �rst line of an input �le is �NO�APP or if you use the ��f� option� whitespace
and comments are not removed from the input �le� Within an input �le� you can ask for
whitespace and comment removal in speci�c portions of the by putting a line that says
�APP before the text that may contain whitespace or comments� and putting a line that
says �NO�APP after this text� This feature is mainly intend to support asm statements in
compilers whose output is otherwise free of comments and whitespace�

��� Whitespace

Whitespace is one or more blanks or tabs� in any order� Whitespace is used to separate
symbols� and to make programs neater for people to read� Unless within character constants
�see Section ��
�� �Character Constants�� page ���� any whitespace means the same as
exactly one space�

��� Comments

There are two ways of rendering comments to as� In both cases the comment is equivalent
to one space�

Anything from ���� through the next ���� is a comment� This means you may not nest
these comments�

��
The only way to include a newline ���n�� in a comment
is to use this sort of comment�

�
 Using as

��

�� This sort of comment does not nest� ��

Anything from the line comment character to the next newline is considered a comment
and is ignored� The line comment character is ��� for the AMD
�K family� ��� on the ARC�
��� for the H����� family� ��� for the H����� family� ��� for the HPPA� ��� on the i�
�� ���
for the Hitachi SH� ��� on the SPARC� ��� on the m�
r� ��� on the
��x�� ��� on the Vax� ���
for the Z����� ��� on the V���� see Chapter � �Machine Dependencies�� page ���

On some machines there are two di	erent line comment characters� One character only
begins a comment if it is the �rst non�whitespace character on a line� while the other always
begins a comment�

The V��� assembler also supports a double dash as starting a comment that extends to
the end of the line�

�����

To be compatible with past assemblers� lines that begin with ��� have a special inter�
pretation� Following the ��� should be an absolute expression �see Chapter
 �Expressions��
page ���� the logical line number of the next line� Then a string �see Section ��
���� �Strings��
page ��� is allowed� if present it is a new logical �le name� The rest of the line� if any�
should be whitespace�

If the �rst non�whitespace characters on the line are not numeric� the line is ignored�
�Just like a comment��

� This is an ordinary comment�
�
��� �new�file�name� � New logical file name

� This is logical line �
��

This feature is deprecated� and may disappear from future versions of as�

��� Symbols

A symbol is one or more characters chosen from the set of all letters �both upper and
lower case�� digits and the three characters ������ On most machines� you can also use �

in symbol names� exceptions are noted in Chapter � �Machine Dependencies�� page ��� No
symbol may begin with a digit� Case is signi�cant� There is no length limit� all characters
are signi�cant� Symbols are delimited by characters not in that set� or by the beginning of
a �le �since the source program must end with a newline� the end of a �le is not a possible
symbol delimiter�� See Chapter � �Symbols�� page
��

��� Statements

A statement ends at a newline character ���n�� or line separator character� �The line
separator is usually ���� unless this con�icts with the comment character� see Chapter �
�Machine Dependencies�� page ���� The newline or separator character is considered part
of the preceding statement� Newlines and separators within character constants are an
exception� they do not end statements�

It is an error to end any statement with end�of��le� the last character of any input �le
should be a newline�

Chapter �� Syntax ��

You may write a statement on more than one line if you put a backslash ��� immediately
in front of any newlines within the statement� When as reads a backslashed newline both
characters are ignored� You can even put backslashed newlines in the middle of symbol
names without changing the meaning of your source program�

An empty statement is allowed� and may include whitespace� It is ignored�

A statement begins with zero or more labels� optionally followed by a key symbol which
determines what kind of statement it is� The key symbol determines the syntax of the rest
of the statement� If the symbol begins with a dot ��� then the statement is an assembler
directive� typically valid for any computer� If the symbol begins with a letter the statement
is an assembly language instruction� it assembles into a machine language instruction�
Di	erent versions of as for di	erent computers recognize di	erent instructions� In fact�
the same symbol may represent a di	erent instruction in a di	erent computer�s assembly
language�

A label is a symbol immediately followed by a colon ���� Whitespace before a label or
after a colon is permitted� but you may not have whitespace between a label�s symbol and
its colon� See Section ��� �Labels�� page
��

For HPPA targets� labels need not be immediately followed by a colon� but the de�nition
of a label must begin in column zero� This also implies that only one label may be de�ned
on each line�

label� �directive followed by something
another�label� � This is an empty statement�

instruction operand��� operand��� � � �

��	 Constants

A constant is a number� written so that its value is known by inspection� without knowing
any context� Like this�

�byte �
� 	���� 	��� 	x
A� 	X
a� �J� ��J � All the same value�
�ascii �Ring the bell��� � A string constant�
�octa 	x��

�����abcdef	��

�����ABCDEF	 � A bignum�
�float 	f�
�
������
�����
�
�
���

�
���
��	���
�������
��
���E�
	 � � pi� a flonum�

����� Character Constants

There are two kinds of character constants� A character stands for one character in one
byte and its value may be used in numeric expressions� String constants �properly called
string literals� are potentially many bytes and their values may not be used in arithmetic
expressions�

������� Strings

A string is written between double�quotes� It may contain double�quotes or null charac�
ters� The way to get special characters into a string is to escape these characters� precede
them with a backslash ��� character� For example ���� represents one backslash� the �rst �
is an escape which tells as to interpret the second character literally as a backslash �which

�� Using as

prevents as from recognizing the second � as an escape character�� The complete list of
escapes follows�

�b Mnemonic for backspace� for ASCII this is octal code ����

�f Mnemonic for FormFeed� for ASCII this is octal code ����

�n Mnemonic for newline� for ASCII this is octal code ��
�

�r Mnemonic for carriage�Return� for ASCII this is octal code ����

�t Mnemonic for horizontal Tab� for ASCII this is octal code ����

� digit digit digit
An octal character code� The numeric code is � octal digits� For compatibility
with other Unix systems� � and � are accepted as digits� for example� �		� has
the value ���� and �		� the value ����

�x hex�digits���
A hex character code� All trailing hex digits are combined� Either upper or
lower case x works�

�� Represents one ��� character�

�� Represents one ��� character� Needed in strings to represent this character�
because an unescaped ��� would end the string�

� anything�else
Any other character when escaped by � gives a warning� but assembles as if the
��� was not present� The idea is that if you used an escape sequence you clearly
didn�t want the literal interpretation of the following character� However as

has no other interpretation� so as knows it is giving you the wrong code and
warns you of the fact�

Which characters are escapable� and what those escapes represent� varies widely among
assemblers� The current set is what we think the BSD ��
 assembler recognizes� and is
a subset of what most C compilers recognize� If you are in doubt� do not use an escape
sequence�

������� Characters

A single character may be written as a single quote immediately followed by that char�
acter� The same escapes apply to characters as to strings� So if you want to write the
character backslash� you must write ��� where the �rst � escapes the second �� As you can
see� the quote is an acute accent� not a grave accent� A newline immediately following an
acute accent is taken as a literal character and does not count as the end of a statement�
The value of a character constant in a numeric expression is the machine�s byte�wide code
for that character� as assumes your character code is ASCII� �A means
�� �B means

�
and so on�

Chapter �� Syntax ��

����� Number Constants

as distinguishes three kinds of numbers according to how they are stored in the target
machine� Integers are numbers that would �t into an int in the C language� Bignums are
integers� but they are stored in more than �
 bits� Flonums are �oating point numbers�
described below�

������� Integers

A binary integer is �	b� or �	B� followed by zero or more of the binary digits �	���

An octal integer is �	� followed by zero or more of the octal digits ��	��

������

A decimal integer starts with a non�zero digit followed by zero or more digits ��	��

��������

A hexadecimal integer is �	x� or �	X� followed by one or more hexadecimal digits chosen
from �	��

�����abcdefABCDEF��

Integers have the usual values� To denote a negative integer� use the pre�x operator ���
discussed under expressions �see Section
�
�� �Pre�x Operators�� page �
��

������� Bignums

A bignum has the same syntax and semantics as an integer except that the number �or
its negative� takes more than �
 bits to represent in binary� The distinction is made because
in some places integers are permitted while bignums are not�

������� Flonums

A �onum represents a �oating point number� The translation is indirect� a decimal
�oating point number from the text is converted by as to a generic binary �oating point
number of more than su�cient precision� This generic �oating point number is converted
to a particular computer�s �oating point format �or formats� by a portion of as specialized
to that computer�

A �onum is written by writing �in order�

� The digit �	�� ��	� is optional on the HPPA��

� A letter� to tell as the rest of the number is a �onum� e is recommended� Case is not
important�

On the H������ H������ Hitachi SH� and AMD
�K architectures� the letter must be
one of the letters �DFPRSX� �in upper or lower case��

On the ARC� the letter must be one of the letters �DFRS� �in upper or lower case��

On the Intel �
� architecture� the letter must be one of the letters �DFT� �in upper or
lower case��

On the HPPA architecture� the letter must be �E� �upper case only��

� An optional sign� either ��� or ����

� An optional integer part� zero or more decimal digits�

� An optional fractional part� ��� followed by zero or more decimal digits�

� An optional exponent� consisting of�

� Using as

� An �E� or �e��

� Optional sign� either ��� or ����

� One or more decimal digits�

At least one of the integer part or the fractional part must be present� The �oating point
number has the usual base��� value�

as does all processing using integers� Flonums are computed independently of any
�oating point hardware in the computer running as�

Chapter �� Sections and Relocation
�

� Sections and Relocation

��� Background

Roughly� a section is a range of addresses� with no gaps� all data �in� those addresses
is treated the same for some particular purpose� For example there may be a �read only�
section�

The linker ld reads many object �les �partial programs� and combines their contents to
form a runnable program� When as emits an object �le� the partial program is assumed to
start at address �� ld assigns the �nal addresses for the partial program� so that di	erent
partial programs do not overlap� This is actually an oversimpli�cation� but it su�ces to
explain how as uses sections�

ld moves blocks of bytes of your program to their run�time addresses� These blocks
slide to their run�time addresses as rigid units� their length does not change and neither
does the order of bytes within them� Such a rigid unit is called a section� Assigning run�
time addresses to sections is called relocation� It includes the task of adjusting mentions
of object��le addresses so they refer to the proper run�time addresses� For the H����� and
H������ and for the Hitachi SH� as pads sections if needed to ensure they end on a word
�sixteen bit� boundary�

An object �le written by as has at least three sections� any of which may be empty�
These are named text� data and bss sections�

When it generates COFF output� as can also generate whatever other named sections
you specify using the ��section� directive �see Section ���
 ��section�� page ���� If you do
not use any directives that place output in the ��text� or ��data� sections� these sections
still exist� but are empty�

When as generates SOM or ELF output for the HPPA� as can also generate what�
ever other named sections you specify using the ��space� and ��subspace� directives� See
HP�			 Series
		 Assembly Language Reference Manual �HP �
��
������� for details on
the ��space� and ��subspace� assembler directives�

Additionally� as uses di	erent names for the standard text� data� and bss sections
when generating SOM output� Program text is placed into the ��CODE�� section� data
into ��DATA��� and BSS into ��BSS���

Within the object �le� the text section starts at address 	� the data section follows� and
the bss section follows the data section�

When generating either SOM or ELF output �les on the HPPA� the text section starts
at address 	� the data section at address 	x
						� and the bss section follows the data
section�

To let ld know which data changes when the sections are relocated� and how to change
that data� as also writes to the object �le details of the relocation needed� To perform
relocation ld must know� each time an address in the object �le is mentioned�

� Where in the object �le is the beginning of this reference to an address�

� How long �in bytes� is this reference�

� Which section does the address refer to� What is the numeric value of

 Using as

�address� � �start�address of section��

� Is the reference to an address �Program�Counter relative��

In fact� every address as ever uses is expressed as

�section� � �o�set into section�

Further� most expressions as computes have this section�relative nature� �For some object
formats� such as SOM for the HPPA� some expressions are symbol�relative instead��

In this manual we use the notation secname N! to mean �o	set N into section secname��

Apart from text� data and bss sections you need to know about the absolute section�
When ld mixes partial programs� addresses in the absolute section remain unchanged� For
example� address absolute 	! is �relocated� to run�time address � by ld� Although the
linker never arranges two partial programs� data sections with overlapping addresses after
linking� by de�nition their absolute sections must overlap� Address absolute �
�! in
one part of a program is always the same address when the program is running as address
 absolute �
�! in any other part of the program�

The idea of sections is extended to the unde�ned section� Any address whose section is
unknown at assembly time is by de�nition rendered unde�ned U!�where U is �lled in
later� Since numbers are always de�ned� the only way to generate an unde�ned address is
to mention an unde�ned symbol� A reference to a named common block would be such a
symbol� its value is unknown at assembly time so it has section unde�ned�

By analogy the word section is used to describe groups of sections in the linked program�
ld puts all partial programs� text sections in contiguous addresses in the linked program�
It is customary to refer to the text section of a program� meaning all the addresses of all
partial programs� text sections� Likewise for data and bss sections�

Some sections are manipulated by ld� others are invented for use of as and have no
meaning except during assembly�

��� Linker Sections

ld deals with just four kinds of sections� summarized below�

named sections

text section

data section

These sections hold your program� as and ld treat them as separate but equal
sections� Anything you can say of one section is true another� When the pro�
gram is running� however� it is customary for the text section to be unalterable�
The text section is often shared among processes� it contains instructions� con�
stants and the like� The data section of a running program is usually alterable�
for example� C variables would be stored in the data section�

bss section

This section contains zeroed bytes when your program begins running� It is
used to hold unitialized variables or common storage� The length of each partial
program�s bss section is important� but because it starts out containing zeroed
bytes there is no need to store explicit zero bytes in the object �le� The bss
section was invented to eliminate those explicit zeros from object �les�

Chapter �� Sections and Relocation
�

absolute section

Address � of this section is always �relocated� to runtime address �� This
is useful if you want to refer to an address that ld must not change when
relocating� In this sense we speak of absolute addresses being �unrelocatable��
they do not change during relocation�

unde�ned section

This �section� is a catch�all for address references to objects not in the preceding
sections�

An idealized example of three relocatable sections follows� The example uses the tradi�
tional section names ��text� and ��data�� Memory addresses are on the horizontal axis�
Partial program ���

text data bss

ttttt dddd 		

Partial program ���

text data bss

TTT DDDD 			

linked program�

text data bss

TTT ttttt dddd DDDD 					
� � �

addresses�

�� � �

��� Assembler Internal Sections

These sections are meant only for the internal use of as� They have no meaning at
run�time� You do not really need to know about these sections for most purposes� but they
can be mentioned in as warning messages� so it might be helpful to have an idea of their
meanings to as� These sections are used to permit the value of every expression in your
assembly language program to be a section�relative address�

ASSEMBLER�INTERNAL�LOGIC�ERROR�

An internal assembler logic error has been found� This means there is a bug in
the assembler�

expr section

The assembler stores complex expression internally as combinations of symbols�
When it needs to represent an expression as a symbol� it puts it in the expr
section�

��� Sub�Sections

Assembled bytes conventionally fall into two sections� text and data� You may have
separate groups of data in named sections that you want to end up near to each other in
the object �le� even though they are not contiguous in the assembler source� as allows you
to use subsections for this purpose� Within each section� there can be numbered subsections

� Using as

with values from � to ���
� Objects assembled into the same subsection go into the object
�le together with other objects in the same subsection� For example� a compiler might want
to store constants in the text section� but might not want to have them interspersed with
the program being assembled� In this case� the compiler could issue a ��text 	� before each
section of code being output� and a ��text �� before each group of constants being output�

Subsections are optional� If you do not use subsections� everything goes in subsection
number zero�

Each subsection is zero�padded up to a multiple of four bytes� �Subsections may be
padded a di	erent amount on di	erent �avors of as��

Subsections appear in your object �le in numeric order� lowest numbered to highest�
�All this to be compatible with other people�s assemblers�� The object �le contains no
representation of subsections� ld and other programs that manipulate object �les see no
trace of them� They just see all your text subsections as a text section� and all your data
subsections as a data section�

To specify which subsection you want subsequent statements assembled into� use a nu�
meric argument to specify it� in a ��text expression� or a ��data expression� statement�
When generating COFF output� you can also use an extra subsection argument with ar�
bitrary named sections� ��section name� expression�� Expression should be an absolute
expression� �See Chapter
 �Expressions�� page ���� If you just say ��text� then ��text 	�
is assumed� Likewise ��data� means ��data 	�� Assembly begins in text 	� For instance�

�text 	 � The default subsection is text 	 anyway�
�ascii �This lives in the first text subsection� ��
�text �
�ascii �But this lives in the second text subsection��
�data 	
�ascii �This lives in the data section��
�ascii �in the first data subsection��
�text 	
�ascii �This lives in the first text section��
�ascii �immediately following the asterisk �����

Each section has a location counter incremented by one for every byte assembled into
that section� Because subsections are merely a convenience restricted to as there is no
concept of a subsection location counter� There is no way to directly manipulate a location
counter�but the �align directive changes it� and any label de�nition captures its current
value� The location counter of the section where statements are being assembled is said to
be the active location counter�

��� bss Section

The bss section is used for local common variable storage� You may allocate address
space in the bss section� but you may not dictate data to load into it before your program
executes� When your program starts running� all the contents of the bss section are zeroed
bytes�

The �lcomm pseudo�op de�nes a symbol in the bss section� see Section ���� ��lcomm��
page ���

Chapter �� Sections and Relocation
�

The �comm pseudo�op may be used to declare a common symbol� which is another form
of uninitialized symbol� see See Section ��� ��comm�� page ���

When assembling for a target which supports multiple sections� such as ELF or COFF�
you may switch into the �bss section and de�ne symbols as usual� see Section ���

��section�� page ��� You may only assemble zero values into the section� Typically the
section will only contain symbol de�nitions and �skip directives �see Section ���� ��skip��
page ����

 Using as

Chapter �� Symbols
�

� Symbols

Symbols are a central concept� the programmer uses symbols to name things� the linker
uses symbols to link� and the debugger uses symbols to debug�

Warning� as does not place symbols in the object �le in the same order they
were declared� This may break some debuggers�

��� Labels

A label is written as a symbol immediately followed by a colon ���� The symbol then
represents the current value of the active location counter� and is� for example� a suitable
instruction operand� You are warned if you use the same symbol to represent two di	erent
locations� the �rst de�nition overrides any other de�nitions�

On the HPPA� the usual form for a label need not be immediately followed by a colon�
but instead must start in column zero� Only one label may be de�ned on a single line�
To work around this� the HPPA version of as also provides a special directive �label for
de�ning labels more �exibly�

��� Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol� followed by an equals
sign ���� followed by an expression �see Chapter
 �Expressions�� page ���� This is equivalent
to using the �set directive� See Section ���� ��set�� page �
�

��� Symbol Names

Symbol names begin with a letter or with one of ����� On most machines� you can also
use � in symbol names� exceptions are noted in Chapter � �Machine Dependencies�� page ���
That character may be followed by any string of digits� letters� dollar signs �unless otherwise
noted in Chapter � �Machine Dependencies�� page ���� and underscores� For the AMD
�K
family� �"� is also allowed in the body of a symbol name� though not at its beginning�

Case of letters is signi�cant� foo is a di	erent symbol name than Foo�

Each symbol has exactly one name� Each name in an assembly language program refers
to exactly one symbol� You may use that symbol name any number of times in a program�

Local Symbol Names

Local symbols help compilers and programmers use names temporarily� There are ten
local symbol names� which are re�used throughout the program� You may refer to them
using the names �	� ��� � � � ���� To de�ne a local symbol� write a label of the form �N�� �where
N represents any digit�� To refer to the most recent previous de�nition of that symbol write
�Nb�� using the same digit as when you de�ned the label� To refer to the next de�nition
of a local label� write �Nf��where N gives you a choice of �� forward references� The �b�
stands for �backwards� and the �f� stands for �forwards��

Local symbols are not emitted by the current gnu C compiler�

� Using as

There is no restriction on how you can use these labels� but remember that at any point
in the assembly you can refer to at most �� prior local labels and to at most �� forward
local labels�

Local symbol names are only a notation device� They are immediately transformed into
more conventional symbol names before the assembler uses them� The symbol names stored
in the symbol table� appearing in error messages and optionally emitted to the object �le
have these parts�

L All local labels begin with �L�� Normally both as and ld forget symbols that
start with �L�� These labels are used for symbols you are never intended to see�
If you use the ��L� option then as retains these symbols in the object �le� If
you also instruct ld to retain these symbols� you may use them in debugging�

digit If the label is written �	�� then the digit is �	�� If the label is written ���� then
the digit is ���� And so on up through �����

C�A This unusual character is included so you do not accidentally invent a symbol
of the same name� The character has ASCII value ��		���

ordinal number
This is a serial number to keep the labels distinct� The �rst �	�� gets the number
���� The ��th �	�� gets the number ����� etc�� Likewise for the other labels ����
through �����

For instance� the �rst �� is named L�C�A�� the ��th
� is named L
C�A

�

��� The Special Dot Symbol

The special symbol ��� refers to the current address that as is assembling into� Thus�
the expression �melvin� �long �� de�nes melvin to contain its own address� Assigning a
value to � is treated the same as a �org directive� Thus� the expression �����
� is the same
as saying ��space
��

��� Symbol Attributes

Every symbol has� as well as its name� the attributes �Value� and �Type�� Depending
on output format� symbols can also have auxiliary attributes�

If you use a symbol without de�ning it� as assumes zero for all these attributes� and
probably won�t warn you� This makes the symbol an externally de�ned symbol� which is
generally what you would want�

����� Value

The value of a symbol is �usually� �
 bits� For a symbol which labels a location in the
text� data� bss or absolute sections the value is the number of addresses from the start of
that section to the label� Naturally for text� data and bss sections the value of a symbol
changes as ld changes section base addresses during linking� Absolute symbols� values do
not change during linking� that is why they are called absolute�

Chapter �� Symbols
�

The value of an unde�ned symbol is treated in a special way� If it is � then the symbol
is not de�ned in this assembler source �le� and ld tries to determine its value from other
�les linked into the same program� You make this kind of symbol simply by mentioning a
symbol name without de�ning it� A non�zero value represents a �comm common declaration�
The value is how much common storage to reserve� in bytes �addresses�� The symbol refers
to the �rst address of the allocated storage�

����� Type

The type attribute of a symbol contains relocation �section� information� any �ag settings
indicating that a symbol is external� and �optionally�� other information for linkers and
debuggers� The exact format depends on the object�code output format in use�

����� Symbol Attributes� a�out

������� Descriptor

This is an arbitrary �
�bit value� You may establish a symbol�s descriptor value by using
a �desc statement �see Section ���
 ��desc�� page ���� A descriptor value means nothing
to as�

������� Other

This is an arbitrary ��bit value� It means nothing to as�

����	 Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes� like the primary
symbol attributes� they are set between �def and �endef directives�

����	�� Primary Attributes

The symbol name is set with �def� the value and type� respectively� with �val and
�type�

����	�� Auxiliary Attributes

The as directives �dim� �line� �scl� �size� and �tag can generate auxiliary symbol
table information for COFF�

����� Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol attributes set with the
�EXPORT and �IMPORT directives�

The attributes are described in HP�			 Series
		 Assembly Language Reference Manual
�HP �
��
������� under the IMPORT and EXPORT assembler directive documentation�

�� Using as

Chapter
� Expressions ��

� Expressions

An expression speci�es an address or numeric value� Whitespace may precede and�or
follow an expression�

The result of an expression must be an absolute number� or else an o	set into a particular
section� If an expression is not absolute� and there is not enough information when as sees
the expression to know its section� a second pass over the source program might be necessary
to interpret the expression�but the second pass is currently not implemented� as aborts
with an error message in this situation�

	�� Empty Expressions

An empty expression has no value� it is just whitespace or null� Wherever an absolute
expression is required� you may omit the expression� and as assumes a value of �absolute�
�� This is compatible with other assemblers�

	�� Integer Expressions

An integer expression is one or more arguments delimited by operators�

����� Arguments

Arguments are symbols� numbers or subexpressions� In other contexts arguments are
sometimes called �arithmetic operands�� In this manual� to avoid confusing them with the
�instruction operands� of the machine language� we use the term �argument� to refer to
parts of expressions only� reserving the word �operand� to refer only to machine instruction
operands�

Symbols are evaluated to yield section NNN! where section is one of text� data� bss�
absolute� or unde�ned� NNN is a signed�
�s complement �
 bit integer�

Numbers are usually integers�

A number can be a �onum or bignum� In this case� you are warned that only the low
order �
 bits are used� and as pretends these �
 bits are an integer� You may write integer�
manipulating instructions that act on exotic constants� compatible with other assemblers�

Subexpressions are a left parenthesis ��� followed by an integer expression� followed by a
right parenthesis ���� or a pre�x operator followed by an argument�

����� Operators

Operators are arithmetic functions� like � or #� Pre�x operators are followed by an
argument� In�x operators appear between their arguments� Operators may be preceded
and�or followed by whitespace�

�
 Using as

����� Pre
x Operator

as has the following pre�x operators� They each take one argument� which must be
absolute�

� Negation� Two�s complement negation�

$ Complementation� Bitwise not�

����	 In
x Operators

In�x operators take two arguments� one on either side� Operators have precedence� but
operations with equal precedence are performed left to right� Apart from � or �� both
arguments must be absolute� and the result is absolute�

�� Highest Precedence

� Multiplication�

� Division� Truncation is the same as the C operator ���

Remainder�

%

%% Shift Left� Same as the C operator �%%��

&

&& Shift Right� Same as the C operator �&&��

� Intermediate precedence

�

Bitwise Inclusive Or�

' Bitwise And�

(Bitwise Exclusive Or�

� Bitwise Or Not�

�� Lowest Precedence

� Addition� If either argument is absolute� the result has the section of
the other argument� You may not add together arguments from di	erent
sections�

� Subtraction� If the right argument is absolute� the result has the section
of the left argument� If both arguments are in the same section� the result
is absolute� You may not subtract arguments from di	erent sections�

In short� it�s only meaningful to add or subtract the o�sets in an address� you can only
have a de�ned section in one of the two arguments�

Chapter �� Assembler Directives ��

� Assembler Directives

All assembler directives have names that begin with a period ������ The rest of the name
is letters� usually in lower case�

This chapter discusses directives that are available regardless of the target machine
con�guration for the gnu assembler� Some machine con�gurations provide additional di�
rectives� See Chapter � �Machine Dependencies�� page ���

��� �abort

This directive stops the assembly immediately� It is for compatibility with other assem�
blers� The original idea was that the assembly language source would be piped into the
assembler� If the sender of the source quit� it could use this directive tells as to quit also�
One day �abort will not be supported�

��� �ABORT

When producing COFF output� as accepts this directive as a synonym for ��abort��

When producing b�out output� as accepts this directive� but ignores it�

��� �align abs�expr� abs�expr� abs�expr

Pad the location counter �in the current subsection� to a particular storage boundary�
The �rst expression �which must be absolute� is the alignment required� as described below�

The second expression �also absolute� gives the �ll value to be stored in the padding
bytes� It �and the comma� may be omitted� If it is omitted� the padding bytes are normally
zero� However� on some systems� if the section is marked as containing code and the �ll
value is omitted� the space is �lled with no�op instructions�

The third expression is also absolute� and is also optional� If it is present� it is the
maximum number of bytes that should be skipped by this alignment directive� If doing
the alignment would require skipping more bytes than the speci�ed maximum� then the
alignment is not done at all� You can omit the �ll value �the second argument� entirely by
simply using two commas after the required alignment� this can be useful if you want the
alignment to be �lled with no�op instructions when appropriate�

The way the required alignment is speci�ed varies from system to system� For the
a
�k� hppa� m
�k� m��k� w
�� sparc� and Hitachi SH� and i��
 using ELF format� the �rst
expression is the alignment request in bytes� For example ��align �� advances the location
counter until it is a multiple of �� If the location counter is already a multiple of �� no
change is needed�

For other systems� including the i��
 using a�out format� it is the number of low�order
zero bits the location counter must have after advancement� For example ��align
� ad�
vances the location counter until it a multiple of �� If the location counter is already a
multiple of �� no change is needed�

This inconsistency is due to the di	erent behaviors of the various native assemblers
for these systems which GAS must emulate� GAS also provides �balign and �p�align

�� Using as

directives� described later� which have a consistent behavior across all architectures �but
are speci�c to GAS��

��� �app�file string

�app�file �which may also be spelled ��file�� tells as that we are about to start a new
logical �le� string is the new �le name� In general� the �lename is recognized whether or not
it is surrounded by quotes ���� but if you wish to specify an empty �le name is permitted�
you must give the quotes ��� This statement may go away in future� it is only recognized
to be compatible with old as programs�

��� �ascii �string�� � �

�ascii expects zero or more string literals �see Section ��
���� �Strings�� page ��� sep�
arated by commas� It assembles each string �with no automatic trailing zero byte� into
consecutive addresses�

��	 �asciz �string�� � �

�asciz is just like �ascii� but each string is followed by a zero byte� The �z� in ��asciz�
stands for �zero��

��� �balign�wl� abs�expr� abs�expr� abs�expr

Pad the location counter �in the current subsection� to a particular storage boundary�
The �rst expression �which must be absolute� is the alignment request in bytes� For example
��balign �� advances the location counter until it is a multiple of �� If the location counter
is already a multiple of �� no change is needed�

The second expression �also absolute� gives the �ll value to be stored in the padding
bytes� It �and the comma� may be omitted� If it is omitted� the padding bytes are normally
zero� However� on some systems� if the section is marked as containing code and the �ll
value is omitted� the space is �lled with no�op instructions�

The third expression is also absolute� and is also optional� If it is present� it is the
maximum number of bytes that should be skipped by this alignment directive� If doing
the alignment would require skipping more bytes than the speci�ed maximum� then the
alignment is not done at all� You can omit the �ll value �the second argument� entirely by
simply using two commas after the required alignment� this can be useful if you want the
alignment to be �lled with no�op instructions when appropriate�

The �balignw and �balignl directives are variants of the �balign directive� The
�balignw directive treats the �ll pattern as a two byte word value� The �balignl directives
treats the �ll pattern as a four byte longword value� For example� �balignw
�	x
��d will
align to a multiple of �� If it skips two bytes� they will be �lled in with the value �x�
�d
�the exact placement of the bytes depends upon the endianness of the processor�� If it skips
� or � bytes� the �ll value is unde�ned�

Chapter �� Assembler Directives ��

��� �byte expressions

�byte expects zero or more expressions� separated by commas� Each expression is as�
sembled into the next byte�

��� �comm symbol � length

�comm declares a common symbol named symbol� When linking� a common symbol in
one object �le may be merged with a de�ned or common symbol of the same name in
another object �le� If ld does not see a de�nition for the symbol just one or more common
symbols then it will allocate length bytes of uninitialized memory� length must be an
absolute expression� If ld sees multiple common symbols with the same name� and they do
not all have the same size� it will allocate space using the largest size�

When using ELF� the �comm directive takes an optional third argument� This is the
desired alignment of the symbol� speci�ed as a byte boundary �for example� an alignment
of �
 means that the least signi�cant � bits of the address should be zero�� The alignment
must be an absolute expression� and it must be a power of two� If ld allocates uninitialized
memory for the common symbol� it will use the alignment when placing the symbol� If no
alignment is speci�ed� as will set the alignment to the largest power of two less than or
equal to the size of the symbol� up to a maximum of �
�

The syntax for �comm di	ers slightly on the HPPA� The syntax is �symbol �comm� length��
symbol is optional�

���� �data subsection

�data tells as to assemble the following statements onto the end of the data subsection
numbered subsection �which is an absolute expression�� If subsection is omitted� it defaults
to zero�

���� �def name

Begin de�ning debugging information for a symbol name� the de�nition extends until
the �endef directive is encountered�

This directive is only observed when as is con�gured for COFF format output� when
producing b�out� ��def� is recognized� but ignored�

���� �desc symbol� abs�expression

This directive sets the descriptor of the symbol �see Section ��� �Symbol Attributes��
page
�� to the low �
 bits of an absolute expression�

The ��desc� directive is not available when as is con�gured for COFF output� it is only
for a�out or b�out object format� For the sake of compatibility� as accepts it� but produces
no output� when con�gured for COFF�

�
 Using as

���� �dim

This directive is generated by compilers to include auxiliary debugging information in
the symbol table� It is only permitted inside �def��endef pairs�

��dim� is only meaningful when generating COFF format output� when as is generating
b�out� it accepts this directive but ignores it�

���� �double �onums

�double expects zero or more �onums� separated by commas� It assembles �oating
point numbers� The exact kind of �oating point numbers emitted depends on how as is
con�gured� See Chapter � �Machine Dependencies�� page ���

���� �eject

Force a page break at this point� when generating assembly listings�

���	 �else

�else is part of the as support for conditional assembly� see Section ��
� ��if�� page ���
It marks the beginning of a section of code to be assembled if the condition for the preceding
�if was false�

���� �endef

This directive �ags the end of a symbol de�nition begun with �def�

��endef� is only meaningful when generating COFF format output� if as is con�gured
to generate b�out� it accepts this directive but ignores it�

���� �endif

�endif is part of the as support for conditional assembly� it marks the end of a block
of code that is only assembled conditionally� See Section ��
� ��if�� page ���

���� �equ symbol� expression

This directive sets the value of symbol to expression� It is synonymous with ��set�� see
Section ���� ��set�� page �
�

The syntax for equ on the HPPA is �symbol �equ expression��

Chapter �� Assembler Directives ��

���� �equiv symbol� expression

The �equiv directive is like �equ and �set� except that the assembler will signal an
error if symbol is already de�ned�

Except for the contents of the error message� this is roughly equivalent to

�ifdef SYM
�err
�endif
�equ SYM�VAL

���� �err

If as assembles a �err directive� it will print an error message and� unless the �Z option
was used� it will not generate an object �le� This can be used to signal error an conditionally
compiled code�

���� �extern

�extern is accepted in the source program�for compatibility with other assemblers�
but it is ignored� as treats all unde�ned symbols as external�

���� �file string

�file �which may also be spelled ��app�file�� tells as that we are about to start a
new logical �le� string is the new �le name� In general� the �lename is recognized whether
or not it is surrounded by quotes ���� but if you wish to specify an empty �le name� you
must give the quotes ��� This statement may go away in future� it is only recognized to
be compatible with old as programs� In some con�gurations of as� �file has already been
removed to avoid con�icts with other assemblers� See Chapter � �Machine Dependencies��
page ���

���� �fill repeat � size � value

result� size and value are absolute expressions� This emits repeat copies of size bytes�
Repeat may be zero or more� Size may be zero or more� but if it is more than �� then it
is deemed to have the value �� compatible with other people�s assemblers� The contents of
each repeat bytes is taken from an ��byte number� The highest order � bytes are zero� The
lowest order � bytes are value rendered in the byte�order of an integer on the computer as
is assembling for� Each size bytes in a repetition is taken from the lowest order size bytes
of this number� Again� this bizarre behavior is compatible with other people�s assemblers�

size and value are optional� If the second comma and value are absent� value is assumed
zero� If the �rst comma and following tokens are absent� size is assumed to be ��

�� Using as

���� �float �onums

This directive assembles zero or more �onums� separated by commas� It has the same
e	ect as �single� The exact kind of �oating point numbers emitted depends on how as is
con�gured� See Chapter � �Machine Dependencies�� page ���

���	 �global symbol� �globl symbol

�global makes the symbol visible to ld� If you de�ne symbol in your partial program�
its value is made available to other partial programs that are linked with it� Otherwise�
symbol takes its attributes from a symbol of the same name from another �le linked into
the same program�

Both spellings ���globl� and ��global�� are accepted� for compatibility with other as�
semblers�

On the HPPA� �global is not always enough to make it accessible to other partial
programs� You may need the HPPA�only �EXPORT directive as well� See Section �����
�HPPA Assembler Directives�� page
��

���� �hword expressions

This expects zero or more expressions� and emits a �
 bit number for each�

This directive is a synonym for ��short�� depending on the target architecture� it may
also be a synonym for ��word��

���� �ident

This directive is used by some assemblers to place tags in object �les� as simply accepts
the directive for source��le compatibility with such assemblers� but does not actually emit
anything for it�

���� �if absolute expression

�if marks the beginning of a section of code which is only considered part of the source
program being assembled if the argument �which must be an absolute expression� is non�
zero� The end of the conditional section of code must be marked by �endif �see Section ����
��endif�� page �
�� optionally� you may include code for the alternative condition� �agged
by �else �see Section ���
 ��else�� page �
��

The following variants of �if are also supported�

�ifdef symbol
Assembles the following section of code if the speci�ed symbol has been de�ned�

�ifndef symbol
�ifnotdef symbol

Assembles the following section of code if the speci�ed symbol has not been
de�ned� Both spelling variants are equivalent�

Chapter �� Assembler Directives ��

���� �include ��le�

This directive provides a way to include supporting �les at speci�ed points in your source
program� The code from �le is assembled as if it followed the point of the �include� when
the end of the included �le is reached� assembly of the original �le continues� You can control
the search paths used with the ��I� command�line option �see Chapter
 �Command�Line
Options�� page ��� Quotation marks are required around �le�

���� �int expressions

Expect zero or more expressions� of any section� separated by commas� For each expres�
sion� emit a number that� at run time� is the value of that expression� The byte order and
bit size of the number depends on what kind of target the assembly is for�

���� �irp symbol�values� � �

Evaluate a sequence of statements assigning di	erent values to symbol� The sequence of
statements starts at the �irp directive� and is terminated by an �endr directive� For each
value� symbol is set to value� and the sequence of statements is assembled� If no value is
listed� the sequence of statements is assembled once� with symbol set to the null string� To
refer to symbol within the sequence of statements� use �symbol�

For example� assembling

�irp param�����

move d�param�sp)�
�endr

is equivalent to assembling

move d��sp)�
move d��sp)�
move d
�sp)�

���� �irpc symbol�values� � �

Evaluate a sequence of statements assigning di	erent values to symbol� The sequence
of statements starts at the �irpc directive� and is terminated by an �endr directive� For
each character in value� symbol is set to the character� and the sequence of statements is
assembled� If no value is listed� the sequence of statements is assembled once� with symbol
set to the null string� To refer to symbol within the sequence of statements� use �symbol�

For example� assembling

�irpc param���

move d�param�sp)�
�endr

is equivalent to assembling

move d��sp)�
move d��sp)�
move d
�sp)�

�� Using as

���� �lcomm symbol � length

Reserve length �an absolute expression� bytes for a local common denoted by symbol�
The section and value of symbol are those of the new local common� The addresses are
allocated in the bss section� so that at run�time the bytes start o	 zeroed� Symbol is not
declared global �see Section ��

 ��global�� page ���� so is normally not visible to ld�

Some targets permit a third argument to be used with �lcomm� This argument speci�es
the desired alignment of the symbol in the bss section�

The syntax for �lcomm di	ers slightly on the HPPA� The syntax is �symbol �lcomm�
length�� symbol is optional�

���� �lflags

as accepts this directive� for compatibility with other assemblers� but ignores it�

���	 �line line�number

Change the logical line number� line�number must be an absolute expression� The next
line has that logical line number� Therefore any other statements on the current line �after
a statement separator character� are reported as on logical line number line�number � ��
One day as will no longer support this directive� it is recognized only for compatibility with
existing assembler programs�

Warning� In the AMD
�K con�guration of as� this command is not available� use the
synonym �ln in that context�

Even though this is a directive associated with the a�out or b�out object�code formats�
as still recognizes it when producing COFF output� and treats ��line� as though it were
the COFF ��ln� if it is found outside a �def��endef pair�

Inside a �def� ��line� is� instead� one of the directives used by compilers to generate
auxiliary symbol information for debugging�

���� �linkonce �type�

Mark the current section so that the linker only includes a single copy of it� This may be
used to include the same section in several di	erent object �les� but ensure that the linker
will only include it once in the �nal output �le� The �linkonce pseudo�op must be used
for each instance of the section� Duplicate sections are detected based on the section name�
so it should be unique�

This directive is only supported by a few object �le formats� as of this writing� the only
object �le format which supports it is the Portable Executable format used on Windows
NT�

The type argument is optional� If speci�ed� it must be one of the following strings� For
example�

�linkonce same�size

Not all types may be supported on all object �le formats�

Chapter �� Assembler Directives ��

discard Silently discard duplicate sections� This is the default�

one�only Warn if there are duplicate sections� but still keep only one copy�

same�size

Warn if any of the duplicates have di	erent sizes�

same�contents

Warn if any of the duplicates do not have exactly the same contents�

���� �ln line�number

��ln� is a synonym for ��line��

���� �mri val

If val is non�zero� this tells as to enter MRI mode� If val is zero� this tells as to exit
MRI mode� This change a	ects code assembled until the next �mri directive� or until the
end of the �le� See Section
�� �MRI mode�� page ���

���� �list

Control �in conjunction with the �nolist directive� whether or not assembly listings
are generated� These two directives maintain an internal counter �which is zero initially��
�list increments the counter� and �nolist decrements it� Assembly listings are generated
whenever the counter is greater than zero�

By default� listings are disabled� When you enable them �with the ��a� command line
option� see Chapter
 �Command�Line Options�� page ��� the initial value of the listing
counter is one�

���� �long expressions

�long is the same as ��int�� see Section ���� ��int�� page ���

���� �macro

The commands �macro and �endm allow you to de�ne macros that generate assembly
output� For example� this de�nition speci�es a macro sum that puts a sequence of numbers
into memory�

�macro sum from�	� to��
�long �from
�if �to��from
sum ���from������to
�endif
�endm

With that de�nition� �SUM 	��� is equivalent to this assembly input�

�
 Using as

�long 	
�long �
�long �
�long

�long

�long �

�macro macname
�macro macname macargs � � �

Begin the de�nition of a macro called macname� If your macro de�nition re�
quires arguments� specify their names after the macro name� separated by com�
mas or spaces� You can supply a default value for any macro argument by
following the name with ��de�t�� For example� these are all valid �macro state�
ments�

�macro comm

Begin the de�nition of a macro called comm� which takes no argu�
ments�

�macro plus� p� p�

�macro plus� p p�

Either statement begins the de�nition of a macro called plus��
which takes two arguments� within the macro de�nition� write ��p�
or ��p�� to evaluate the arguments�

�macro reserve�str p��	 p�

Begin the de�nition of a macro called reserve�str� with two argu�
ments� The �rst argument has a default value� but not the second�
After the de�nition is complete� you can call the macro either as
�reserve�str a�b� �with ��p�� evaluating to a and ��p�� evaluating
to b�� or as �reserve�str �b� �with ��p�� evaluating as the default�
in this case �	�� and ��p�� evaluating to b��

When you call a macro� you can specify the argument values either by position�
or by keyword� For example� �sum ����� is equivalent to �sum to���� from����

�endm Mark the end of a macro de�nition�

�exitm Exit early from the current macro de�nition�

�) as maintains a counter of how many macros it has executed in this pseudo�
variable� you can copy that number to your output with ��)�� but only within
a macro de�nition�

���� �nolist

Control �in conjunction with the �list directive� whether or not assembly listings are
generated� These two directives maintain an internal counter �which is zero initially��
�list increments the counter� and �nolist decrements it� Assembly listings are generated
whenever the counter is greater than zero�

Chapter �� Assembler Directives ��

���� �octa bignums

This directive expects zero or more bignums� separated by commas� For each bignum�
it emits a �
�byte integer�

The term �octa� comes from contexts in which a �word� is two bytes� hence octa�word
for �
 bytes�

���� �org new�lc � �ll

Advance the location counter of the current section to new�lc� new�lc is either an absolute
expression or an expression with the same section as the current subsection� That is� you
can�t use �org to cross sections� if new�lc has the wrong section� the �org directive is
ignored� To be compatible with former assemblers� if the section of new�lc is absolute� as
issues a warning� then pretends the section of new�lc is the same as the current subsection�

�org may only increase the location counter� or leave it unchanged� you cannot use �org
to move the location counter backwards�

Because as tries to assemble programs in one pass� new�lc may not be unde�ned� If you
really detest this restriction we eagerly await a chance to share your improved assembler�

Beware that the origin is relative to the start of the section� not to the start of the
subsection� This is compatible with other people�s assemblers�

When the location counter �of the current subsection� is advanced� the intervening bytes
are �lled with �ll which should be an absolute expression� If the comma and �ll are omitted�
�ll defaults to zero�

���	 �p�align�wl� abs�expr� abs�expr� abs�expr

Pad the location counter �in the current subsection� to a particular storage boundary�
The �rst expression �which must be absolute� is the number of low�order zero bits the
location counter must have after advancement� For example ��p�align
� advances the
location counter until it a multiple of �� If the location counter is already a multiple of ��
no change is needed�

The second expression �also absolute� gives the �ll value to be stored in the padding
bytes� It �and the comma� may be omitted� If it is omitted� the padding bytes are normally
zero� However� on some systems� if the section is marked as containing code and the �ll
value is omitted� the space is �lled with no�op instructions�

The third expression is also absolute� and is also optional� If it is present� it is the
maximum number of bytes that should be skipped by this alignment directive� If doing
the alignment would require skipping more bytes than the speci�ed maximum� then the
alignment is not done at all� You can omit the �ll value �the second argument� entirely by
simply using two commas after the required alignment� this can be useful if you want the
alignment to be �lled with no�op instructions when appropriate�

The �p�alignw and �p�alignl directives are variants of the �p�align directive� The
�p�alignw directive treats the �ll pattern as a two byte word value� The �p�alignl di�
rectives treats the �ll pattern as a four byte longword value� For example� �p�alignw

�� Using as

��	x
��d will align to a multiple of �� If it skips two bytes� they will be �lled in with
the value �x�
�d �the exact placement of the bytes depends upon the endianness of the
processor�� If it skips � or � bytes� the �ll value is unde�ned�

���� �psize lines � columns

Use this directive to declare the number of lines�and� optionally� the number of
columns�to use for each page� when generating listings�

If you do not use �psize� listings use a default line�count of
�� You may omit the
comma and columns speci�cation� the default width is
�� columns�

as generates formfeeds whenever the speci�ed number of lines is exceeded �or whenever
you explicitly request one� using �eject��

If you specify lines as 	� no formfeeds are generated save those explicitly speci�ed with
�eject�

���� �quad bignums

�quad expects zero or more bignums� separated by commas� For each bignum� it emits
an ��byte integer� If the bignum won�t �t in � bytes� it prints a warning message� and just
takes the lowest order � bytes of the bignum�

The term �quad� comes from contexts in which a �word� is two bytes� hence quad�word
for � bytes�

���� �rept count

Repeat the sequence of lines between the �rept directive and the next �endr directive
count times�

For example� assembling

�rept

�long 	
�endr

is equivalent to assembling

�long 	
�long 	
�long 	

���� �sbttl �subheading�

Use subheading as the title �third line� immediately after the title line� when generating
assembly listings�

This directive a	ects subsequent pages� as well as the current page if it appears within
ten lines of the top of a page�

Chapter �� Assembler Directives ��

���� �scl class

Set the storage�class value for a symbol� This directive may only be used inside a
�def��endef pair� Storage class may �ag whether a symbol is static or external� or it may
record further symbolic debugging information�

The ��scl� directive is primarily associated with COFF output� when con�gured to
generate b�out output format� as accepts this directive but ignores it�

���� �section name

Use the �section directive to assemble the following code into a section named name�

This directive is only supported for targets that actually support arbitrarily named
sections� on a�out targets� for example� it is not accepted� even with a standard a�out

section name�

For COFF targets� the �section directive is used in one of the following ways�

�section name�� ��ags��
�section name�� subsegment�

If the optional argument is quoted� it is taken as �ags to use for the section� Each �ag
is a single character� The following �ags are recognized�

b bss section �uninitialized data�

n section is not loaded

w writable section

d data section

r read�only section

x executable section

If no �ags are speci�ed� the default �ags depend upon the section name� If the section
name is not recognized� the default will be for the section to be loaded and writable�

If the optional argument to the �section directive is not quoted� it is taken as a sub�
segment number �see Section ��� �Sub�Sections�� page
���

For ELF targets� the �section directive is used like this�

�section name�� ��ags���)type��

The optional �ags argument is a quoted string which may contain any combintion of the
following characters�

a section is allocatable

w section is writable

x section is executable

The optional type argument may contain one of the following constants�

)progbits

section contains data

�
 Using as

)nobits section does not contain data �i�e�� section only occupies space�

If no �ags are speci�ed� the default �ags depend upon the section name� If the section
name is not recognized� the default will be for the section to have none of the above �ags�
it will not be allocated in memory� nor writable� nor executable� The section will contain
data�

For ELF targets� the assembler supports another type of �section directive for compat�
ibility with the Solaris assembler�

�section �name��� �ags����

Note that the section name is quoted� There may be a sequence of comma separated
�ags�

�alloc section is allocatable

�write section is writable

�execinstr

section is executable

���� �set symbol� expression

Set the value of symbol to expression� This changes symbol�s value and type to conform
to expression� If symbol was �agged as external� it remains �agged �see Section ��� �Symbol
Attributes�� page
���

You may �set a symbol many times in the same assembly�

If you �set a global symbol� the value stored in the object �le is the last value stored
into it�

The syntax for set on the HPPA is �symbol �set expression��

���� �short expressions

�short is normally the same as ��word�� See Section ��
� ��word�� page ���

In some con�gurations� however� �short and �word generate numbers of di	erent
lengths� see Chapter � �Machine Dependencies�� page ���

���� �single �onums

This directive assembles zero or more �onums� separated by commas� It has the same
e	ect as �float� The exact kind of �oating point numbers emitted depends on how as is
con�gured� See Chapter � �Machine Dependencies�� page ���

���	 �size

This directive is generated by compilers to include auxiliary debugging information in
the symbol table� It is only permitted inside �def��endef pairs�

��size� is only meaningful when generating COFF format output� when as is generating
b�out� it accepts this directive but ignores it�

Chapter �� Assembler Directives ��

���� �sleb��	 expressions

sleb��
 stands for �signed little endian base �
��� This is a compact� variable length
representation of numbers used by the DWARF symbolic debugging format� See Section ��
�
�Uleb�
��� page ���

���� �skip size � �ll

This directive emits size bytes� each of value �ll� Both size and �ll are absolute expres�
sions� If the comma and �ll are omitted� �ll is assumed to be zero� This is the same as
��space��

���� �space size � �ll

This directive emits size bytes� each of value �ll� Both size and �ll are absolute expres�
sions� If the comma and �ll are omitted� �ll is assumed to be zero� This is the same as
��skip��

Warning� �space has a completely di	erent meaning for HPPA targets� use
�block as a substitute� See HP�			 Series
		 Assembly Language Reference
Manual �HP �
��
������� for the meaning of the �space directive� See Sec�
tion ����� �HPPA Assembler Directives�� page
�� for a summary�

On the AMD
�K� this directive is ignored� it is accepted for compatibility with other
AMD
�K assemblers�

Warning� In most versions of the gnu assembler� the directive �space has the
e	ect of �block See Chapter � �Machine Dependencies�� page ���

��	� �stabd� �stabn� �stabs

There are three directives that begin ��stab�� All emit symbols �see Chapter � �Symbols��
page
��� for use by symbolic debuggers� The symbols are not entered in the as hash table�
they cannot be referenced elsewhere in the source �le� Up to �ve �elds are required�

string This is the symbol�s name� It may contain any character except ��			�� so
is more general than ordinary symbol names� Some debuggers used to code
arbitrarily complex structures into symbol names using this �eld�

type An absolute expression� The symbol�s type is set to the low � bits of this
expression� Any bit pattern is permitted� but ld and debuggers choke on silly
bit patterns�

other An absolute expression� The symbol�s �other� attribute is set to the low � bits
of this expression�

desc An absolute expression� The symbol�s descriptor is set to the low �
 bits of this
expression�

value An absolute expression which becomes the symbol�s value�

�� Using as

If a warning is detected while reading a �stabd� �stabn� or �stabs statement� the
symbol has probably already been created� you get a half�formed symbol in your object �le�
This is compatible with earlier assemblers�

�stabd type � other � desc
The �name� of the symbol generated is not even an empty string� It is a null
pointer� for compatibility� Older assemblers used a null pointer so they didn�t
waste space in object �les with empty strings�

The symbol�s value is set to the location counter� relocatably� When your
program is linked� the value of this symbol is the address of the location counter
when the �stabd was assembled�

�stabn type � other � desc � value
The name of the symbol is set to the empty string ���

�stabs string � type � other � desc � value
All �ve �elds are speci�ed�

��	� �string �str�

Copy the characters in str to the object �le� You may specify more than one string
to copy� separated by commas� Unless otherwise speci�ed for a particular machine� the
assembler marks the end of each string with a � byte� You can use any of the escape
sequences described in Section ��
���� �Strings�� page ���

��	� �symver

Use the �symver directive to bind symbols to speci�c version nodes within a source �le�
This is only supported on ELF platforms� and is typically used when assembling �les to be
linked into a shared library� There are cases where it may make sense to use this in objects
to be bound into an application itself so as to override a versioned symbol from a shared
library�

For ELF targets� the �symver directive is used like this�

�symver name� name�)nodename

In this case� the symbol name must exist and be de�ned within the �le being assembled�
The �versym directive e	ectively creates a symbol alias with the name name�)nodename�
and in fact the main reason that we just don�t try and create a regular alias is that the)

character isn�t permitted in symbol names� The name� part of the name is the actual name
of the symbol by which it will be externally referenced� The name name itself is merely a
name of convenience that is used so that it is possible to have de�nitions for multiple versions
of a function within a single source �le� and so that the compiler can unambiguously know
which version of a function is being mentioned� The nodename portion of the alias should
be the name of a node speci�ed in the version script supplied to the linker when building a
shared library� If you are attempting to override a versioned symbol from a shared library�
then nodename should correspond to the nodename of the symbol you are trying to override�

Chapter �� Assembler Directives ��

��	� �tag structname

This directive is generated by compilers to include auxiliary debugging information in
the symbol table� It is only permitted inside �def��endef pairs� Tags are used to link
structure de�nitions in the symbol table with instances of those structures�

��tag� is only used when generating COFF format output� when as is generating b�out�
it accepts this directive but ignores it�

��	� �text subsection

Tells as to assemble the following statements onto the end of the text subsection num�
bered subsection� which is an absolute expression� If subsection is omitted� subsection
number zero is used�

��	� �title �heading�

Use heading as the title �second line� immediately after the source �le name and pa�
genumber� when generating assembly listings�

This directive a	ects subsequent pages� as well as the current page if it appears within
ten lines of the top of a page�

��		 �type int

This directive� permitted only within �def��endef pairs� records the integer int as the
type attribute of a symbol table entry�

��type� is associated only with COFF format output� when as is con�gured for b�out
output� it accepts this directive but ignores it�

��	� �val addr

This directive� permitted only within �def��endef pairs� records the address addr as
the value attribute of a symbol table entry�

��val� is used only for COFF output� when as is con�gured for b�out� it accepts this
directive but ignores it�

��	� �uleb��	 expressions

uleb��
 stands for �unsigned little endian base �
��� This is a compact� variable length
representation of numbers used by the DWARF symbolic debugging format� See Section ����
�Sleb�
��� page ���

�� Using as

��	� �word expressions

This directive expects zero or more expressions� of any section� separated by commas�

The size of the number emitted� and its byte order� depend on what target computer
the assembly is for�

Warning� Special Treatment to support Compilers

Machines with a �
�bit address space� but that do less than �
�bit addressing� require
the following special treatment� If the machine of interest to you does �
�bit addressing
�or doesn�t require it� see Chapter � �Machine Dependencies�� page ���� you can ignore this
issue�

In order to assemble compiler output into something that works� as occasionlly does
strange things to ��word� directives� Directives of the form ��word sym��sym�� are often
emitted by compilers as part of jump tables� Therefore� when as assembles a directive of
the form ��word sym��sym��� and the di	erence between sym� and sym� does not �t in �

bits� as creates a secondary jump table� immediately before the next label� This secondary
jump table is preceded by a short�jump to the �rst byte after the secondary table� This
short�jump prevents the �ow of control from accidentally falling into the new table� Inside
the table is a long�jump to sym�� The original ��word� contains sym� minus the address of
the long�jump to sym��

If there were several occurrences of ��word sym��sym�� before the secondary jump table�
all of them are adjusted� If there was a ��word sym
�sym
�� that also did not �t in sixteen
bits� a long�jump to sym
 is included in the secondary jump table� and the �word directives
are adjusted to contain sym
 minus the address of the long�jump to sym
� and so on� for as
many entries in the original jump table as necessary�

���� Deprecated Directives

One day these directives won�t work� They are included for compatibility with older
assemblers�

�abort

�app�file

�line

Chapter �� Machine Dependent Features ��

	 Machine Dependent Features

The machine instruction sets are �almost by de�nition� di	erent on each machine where
as runs� Floating point representations vary as well� and as often supports a few additional
directives or command�line options for compatibility with other assemblers on a particu�
lar platform� Finally� some versions of as support special pseudo�instructions for branch
optimization�

This chapter discusses most of these di	erences� though it does not include details on
any machine�s instruction set� For details on that subject� see the hardware manufacturer�s
manual�

�
 Using as

��� ARC Dependent Features

����� Options

The ARC chip family includes several successive levels �or other variants� of chip� using
the same core instruction set� but including a few additional instructions at each level�

By default� as assumes the core instruction set �ARC base�� The �cpu pseudo�op is
intended to be used to select the variant�

�mbig�endian

�mlittle�endian

Any arc con�guration of as can select big�endian or little�endian output at
run time �unlike most other gnu development tools� which must be con�gured
for one or the other�� Use ��mbig�endian� to select big�endian output� and
��mlittle�endian� for little�endian�

����� Floating Point

The ARC cpu family currently does not have hardware �oating point support� Software
�oating point support is provided by GCC and uses ieee �oating�point numbers�

����� ARC Machine Directives

The ARC version of as supports the following additional machine directives�

�cpu This must be followed by the desired cpu� The ARC is intended to be cus�
tomizable� �cpu is used to select the desired variant �though currently there are
none��

Chapter �� Machine Dependent Features ��

��� AMD ��K Dependent Features

����� Options

as has no additional command�line options for the AMD
�K family�

����� Syntax

������� Macros

The macro syntax used on the AMD
�K is like that described in the AMD
�K Family
Macro Assembler Speci�cation� Normal as macros should still work�

������� Special Characters

��� is the line comment character�

The character �"� is permitted in identi�ers �but may not begin an identi�er��

������� Register Names

General�purpose registers are represented by prede�ned symbols of the form �GRnnn� �for
global registers� or �LRnnn� �for local registers�� where nnn represents a number between 	

and ���� written with no leading zeros� The leading letters may be in either upper or lower
case� for example� �gr�
� and �LR�� are both valid register names�

You may also refer to general�purpose registers by specifying the register number as the
result of an expression �pre�xed with �##� to �ag the expression as a register number��

##expression

�where expression must be an absolute expression evaluating to a number between 	 and
���� The range ��� �
�� refers to global registers� and the range ��
��
��� to local registers�

In addition� as understands the following protected special�purpose register names for
the AMD
�K family�

vab chd pc	
ops chc pc�
cps rbp pc�
cfg tmc mmu
cha tmr lru

These unprotected special�purpose register names are also recognized�

ipc alu fpe
ipa bp inte
ipb fc fps
q cr exop

����� Floating Point

The AMD
�K family uses ieee �oating�point numbers�

�� Using as

����	 AMD ��K Machine Directives

�block size � �ll
This directive emits size bytes� each of value �ll� Both size and �ll are absolute
expressions� If the comma and �ll are omitted� �ll is assumed to be zero�

In other versions of the gnu assembler� this directive is called ��space��

�cputype This directive is ignored� it is accepted for compatibility with other AMD
�K
assemblers�

�file This directive is ignored� it is accepted for compatibility with other AMD
�K
assemblers�

Warning� in other versions of the gnu assembler� �file is used for
the directive called �app�file in the AMD
�K support�

�line This directive is ignored� it is accepted for compatibility with other AMD
�K
assemblers�

�sect This directive is ignored� it is accepted for compatibility with other AMD
�K
assemblers�

�use section name
Establishes the section and subsection for the following code� section name may
be one of �text� �data� �data�� or �lit� With one of the �rst three section
name options� ��use� is equivalent to the machine directive section name� the
remaining case� ��use �lit�� is the same as ��data �		��

����� Opcodes

as implements all the standard AMD
�K opcodes� No additional pseudo�instructions
are needed on this family�

For information on the
�K machine instruction set� see Am��			 User�s Manual� Ad�
vanced Micro Devices� Inc�

Chapter �� Machine Dependent Features ��

��� ARM Dependent Features

����� Options

�marm

����	������	��		���	���	����m��d��dm��di��dmi��	��		��		i���	���	c���		���		���		fe��tdmi�
�st
This option speci�es the target processor� The assembler will issue an error
message if an attempt is made to assemble an instruction which will not execute
on the target processor�

�marmv
���a����m����t�
This option speci�es the target architecture� The assembler will issue an error
message if an attempt is made to assemble an instruction which will not execute
on the target architecture�

�mthumb This option speci�es that only Thumb instructions should be assembled�

�mall This option speci�es that any Arm or Thumb instruction should be assembled�

�mfpa
�	����
This option speci�es the �oating point architecture in use on the target proces�
sor�

�mfpe�old

Do not allow the assemble of �oating point multiple instructions�

�mno�fpu Do not allow the assembly of any �oating point instructions�

�mthumb�interwork

This option speci�es that the output generated by the assembler should be
marked as supporting interworking�

�mapcs
������
This option speci�es that the output generated by the assembler should be
marked as supporting the indicated version of the Arm Procedure� Calling
Standard�

�EB This option speci�es that the output generated by the assembler should be
marked as being encoded for a big�endian processor�

�EL This option speci�es that the output generated by the assembler should be
marked as being encoded for a little�endian processor�

����� Syntax

������� Special Characters

��� is the line comment character�

!TODO! Explain about �data modi�er on symbols�

�
 Using as

������� Register Names

!TODO! Explain about ARM register naming� and the prede�ned names�

����� Floating Point

The ARM family uses ieee �oating�point numbers�

����	 ARM Machine Directives

�code
������
This directive selects the instruction set being generated� The value �
 selects
Thumb� with the value �
 selecting ARM�

�thumb This performs the same action as �code ���

�arm This performs the same action as �code ���

�force�thumb

This directive forces the selection of Thumb instructions� even if the target
processor does not support those instructions

�thumb�func

This directive speci�es that the following symbol is the name of a Thumb en�
coded function� This information is necessary in order to allow the assembler
and linker to generate correct code for interworking between Arm and Thumb
instructions and should be used even if interworking is not going to be per�
formed�

����� Opcodes

as implements all the standard ARM opcodes�

!TODO! Document the pseudo�ops �adr� nop�

For information on the ARM or Thumb instruction sets� see ARM Software Development
Toolkit Reference Manual� Advanced RISC Machines Ltd�

Chapter �� Machine Dependent Features ��

��� D��V Dependent Features

��	�� D�
V Options

The Mitsubishi D��V version of as has a few machine dependent options�

��O� The D��V can often execute two sub�instructions in parallel� When this option
is used� as will attempt to optimize its output by detecting when instructions
can be executed in parallel�

���nowarnswap�
To optimize execution performance� as will sometimes swap the order of in�
structions� Normally this generates a warning� When this option is used� no
warning will be generated when instructions are swapped�

��	�� Syntax

The D��V syntax is based on the syntax in Mitsubishi�s D��V architecture manual� The
di	erences are detailed below�

��	���� Size Modi
ers

The D��V version of as uses the instruction names in the D��V Architecture Manual�
However� the names in the manual are sometimes ambiguous� There are instruction names
that can assemble to a short or long form opcode� How does the assembler pick the correct
form� as will always pick the smallest form if it can� When dealing with a symbol that
is not de�ned yet when a line is being assembled� it will always use the long form� If you
need to force the assembler to use either the short or long form of the instruction� you can
append either ��s� �short� or ��l� �long� to it� For example� if you are writing an assembly
program and you want to do a branch to a symbol that is de�ned later in your program� you
can write �bra�s foo�� Objdump and GDB will always append ��s� or ��l� to instructions
which have both short and long forms�

��	���� Sub�Instructions

The D��V assembler takes as input a series of instructions� either one�per�line� or in
the special two�per�line format described in the next section� Some of these instructions
will be short�form or sub�instructions� These sub�instructions can be packed into a single
instruction� The assembler will do this automatically� It will also detect when it should not
pack instructions� For example� when a label is de�ned� the next instruction will never be
packaged with the previous one� Whenever a branch and link instruction is called� it will
not be packaged with the next instruction so the return address will be valid� Nops are
automatically inserted when necessary�

If you do not want the assembler automatically making these decisions� you can control
the packaging and execution type �parallel or sequential� with the special execution symbols
described in the next section�

�� Using as

��	���� Special Characters

��� and ��� are the line comment characters� Sub�instructions may be executed in order�
in reverse�order� or in parallel� Instructions listed in the standard one�per�line format will
be executed sequentially� To specify the executing order� use the following symbols�

��&� Sequential with instruction on the left �rst�

�%�� Sequential with instruction on the right �rst�

���� Parallel

The D��V syntax allows either one instruction per line� one instruction per line with the
execution symbol� or two instructions per line� For example

abs a� �& abs r	

Execute these sequentially� The instruction on the right is in the right container
and is executed second�

abs r	 %� abs a�

Execute these reverse�sequentially� The instruction on the right is in the right
container� and is executed �rst�

ld�w r��)r�� �� mac a	�r	�r�

Execute these in parallel�

ld�w r��)r�� ��

mac a	�r	�r�

Two�line format� Execute these in parallel�

ld�w r��)r��

mac a	�r	�r�

Two�line format� Execute these sequentially� Assembler will put them in the
proper containers�

ld�w r��)r�� �&

mac a	�r	�r�

Two�line format� Execute these sequentially� Same as above but second in�
struction will always go into right container�

Since ��� has no special meaning� you may use it in symbol names�

��	���	 Register Names

You can use the prede�ned symbols �r	� through �r��� to refer to the D��V registers� You
can also use �sp� as an alias for �r���� The accumulators are �a	� and �a��� There are special
register�pair names that may optionally be used in opcodes that require even�numbered
registers� Register names are not case sensitive�

Register Pairs

r	�r�

r��r

Chapter �� Machine Dependent Features ��

r
�r�

r��r�

r��r�

r�	�r��

r���r�

r�
�r��

The D��V also has prede�ned symbols for these control registers and status bits�

psw Processor Status Word

bpsw Backup Processor Status Word

pc Program Counter

bpc Backup Program Counter

rpt�c Repeat Count

rpt�s Repeat Start address

rpt�e Repeat End address

mod�s Modulo Start address

mod�e Modulo End address

iba Instruction Break Address

f	 Flag �

f� Flag �

c Carry �ag

��	���� Addressing Modes

as understands the following addressing modes for the D��V� Rn in the following refers
to any of the numbered registers� but not the control registers�

Rn Register direct

)Rn Register indirect

)Rn� Register indirect with post�increment

)Rn� Register indirect with post�decrement

)�SP Register indirect with pre�decrement

)�disp� Rn�
Register indirect with displacement

addr PC relative address �for branch or rep��

�imm Immediate data �the ��� is optional and ignored�

� Using as

��	���� �WORD Modi
er

Any symbol followed by)word will be replaced by the symbol�s value shifted right by
�
This is used in situations such as loading a register with the address of a function �or any
other code fragment�� For example� if you want to load a register with the location of the
function main then jump to that function� you could do it as follws�

ldi r�� main)word
jmp r�

��	�� Floating Point

The D��V has no hardware �oating point� but the �float and �double directives gen�
erates ieee �oating�point numbers for compatibility with other development tools�

��	�	 Opcodes

For detailed information on the D��V machine instruction set� see D�	V Architecture� A
VLIW Microprocessor for Multimedia Applications �Mitsubishi Electric Corp��� as imple�
ments all the standard D��V opcodes� The only changes are those described in the section
on size modi�ers

Chapter �� Machine Dependent Features
�

��� H����� Dependent Features

����� Options

as has no additional command�line options for the Hitachi H����� family�

����� Syntax

������� Special Characters

��� is the line comment character�

��� can be used instead of a newline to separate statements� Therefore you may not use
��� in symbol names on the H������

������� Register Names

You can use prede�ned symbols of the form �rnh� and �rnl� to refer to the H�����
registers as sixteen ��bit general�purpose registers� n is a digit from �	� to ����� for instance�
both �r	h� and �r�l� are valid register names�

You can also use the eight prede�ned symbols �rn� to refer to the H����� registers as
�
�bit registers �you must use this form for addressing��

On the H�����H� you can also use the eight prede�ned symbols �ern� ��er	� � � � �er���
to refer to the �
�bit general purpose registers�

The two control registers are called pc �program counter� a �
�bit register� except on
the H�����H where it is
� bits� and ccr �condition code register� an ��bit register�� r� is
used as the stack pointer� and can also be called sp�

������� Addressing Modes

as understands the following addressing modes for the H������

rn Register direct

)rn Register indirect

)�d� rn�
)�d���� rn�
)�d��
� rn�

Register indirect� �
�bit or
��bit displacement d from register n� �
��bit dis�
placements are only meaningful on the H�����H��

)rn� Register indirect with post�increment

)�rn Register indirect with pre�decrement

)aa
)aa��
)aa���
)aa��
 Absolute address aa� �The address size ���
� only makes sense on the H�����H��

 Using as

�xx
�xx��
�xx���
�xx�
� Immediate data xx� You may specify the ����� ������ or ��
�� for clarity� if you

wish� but as neither requires this nor uses it�the data size required is taken
from context�

))aa
))aa�� Memory indirect� You may specify the ���� for clarity� if you wish� but as

neither requires this nor uses it�

����� Floating Point

The H����� family has no hardware �oating point� but the �float directive generates
ieee �oating�point numbers for compatibility with other development tools�

Chapter �� Machine Dependent Features
�

����	 H���

 Machine Directives

as has only one machine�dependent directive for the H������

�h�
		h Recognize and emit additional instructions for the H�����H variant� and also
make �int emit �
�bit numbers rather than the usual ��
�bit� for the H�����
family�

On the H����� family �including the H�����H� ��word� directives generate �
�bit num�
bers�

����� Opcodes

For detailed information on the H����� machine instruction set� see H
��		 Series Pro�
gramming Manual �Hitachi ADE
�
 �
��� For information speci�c to the H�����H� see
H
��		H Series Programming Manual �Hitachi��

as implements all the standard H����� opcodes� No additional pseudo�instructions are
needed on this family�

Four H����� instructions �add� cmp� mov� sub� are de�ned with variants using the su�xes
��b�� ��w�� and ��l� to specify the size of a memory operand� as supports these su�xes� but
does not require them� since one of the operands is always a register� as can deduce the
correct size�

For example� since r	 refers to a �
�bit register�

mov r	�)foo
is equivalent to

mov�w r	�)foo

If you use the size su�xes� as issues a warning when the su�x and the register size do
not match�

� Using as

��	 H����� Dependent Features

����� Options

as has no additional command�line options for the Hitachi H����� family�

����� Syntax

������� Special Characters

��� is the line comment character�

��� can be used instead of a newline to separate statements�

Since ��� has no special meaning� you may use it in symbol names�

������� Register Names

You can use the prede�ned symbols �r	�� �r��� �r��� �r
�� �r
�� �r��� �r��� and �r�� to refer
to the H����� registers�

The H����� also has these control registers�

cp code pointer

dp data pointer

bp base pointer

tp stack top pointer

ep extra pointer

sr status register

ccr condition code register

All registers are �
 bits long� To represent �
 bit numbers� use two adjacent registers�
for distant memory addresses� use one of the segment pointers �cp for the program counter�
dp for r	 r
� ep for r
 and r�� and tp for r� and r��

������� Addressing Modes

as understands the following addressing modes for the H������

Rn Register direct

)Rn Register indirect

)�d��� Rn�
Register indirect with � bit signed displacement

)�d���� Rn�
Register indirect with �
 bit signed displacement

)�Rn Register indirect with pre�decrement

Chapter �� Machine Dependent Features
�

)Rn� Register indirect with post�increment

)aa�� � bit absolute address

)aa��� �
 bit absolute address

�xx�� � bit immediate

�xx��� �
 bit immediate

����� Floating Point

The H����� family has no hardware �oating point� but the �float directive generates
ieee �oating�point numbers for compatibility with other development tools�

����	 H���

 Machine Directives

as has no machine�dependent directives for the H������ However� on this platform the
��int� and ��word� directives generate �
�bit numbers�

����� Opcodes

For detailed information on the H����� machine instruction set� see H
��		 Series Pro�
gramming Manual �Hitachi M
�T�����

as implements all the standard H����� opcodes� No additional pseudo�instructions are
needed on this family�

 Using as

��� HPPA Dependent Features

����� Notes

As a back end for gnu cc as has been throughly tested and should work extremely well�
We have tested it only minimally on hand written assembly code and no one has tested it
much on the assembly output from the HP compilers�

The format of the debugging sections has changed since the original as port �version
���X� was released� therefore� you must rebuild all HPPA objects and libraries with the new
assembler so that you can debug the �nal executable�

The HPPA as port generates a small subset of the relocations available in the SOM
and ELF object �le formats� Additional relocation support will be added as it becomes
necessary�

����� Options

as has no machine�dependent command�line options for the HPPA�

����� Syntax

The assembler syntax closely follows the HPPA instruction set reference manual� as�
sembler directives and general syntax closely follow the HPPA assembly language reference
manual� with a few noteworthy di	erences�

First� a colon may immediately follow a label de�nition� This is simply for compatibility
with how most assembly language programmers write code�

Some obscure expression parsing problems may a	ect hand written code which uses the
spop instructions� or code which makes signi�cant use of the � line separator�

as is much less forgiving about missing arguments and other similar oversights than the
HP assembler� as noti�es you of missing arguments as syntax errors� this is regarded as a
feature� not a bug�

Finally� as allows you to use an external symbol without explicitly importing the symbol�
Warning� in the future this will be an error for HPPA targets�

Special characters for HPPA targets include�

��� is the line comment character�

��� can be used instead of a newline to separate statements�

Since ��� has no special meaning� you may use it in symbol names�

����	 Floating Point

The HPPA family uses ieee �oating�point numbers�

Chapter �� Machine Dependent Features
�

����� HPPA Assembler Directives

as for the HPPA supports many additional directives for compatibility with the native
assembler� This section describes them only brie�y� For detailed information on HPPA�
speci�c assembler directives� see HP�			 Series
		 Assembly Language Reference Manual
�HP �
��
��������

as does not support the following assembler directives described in the HP manual�

�endm �liston
�enter �locct
�leave �macro
�listoff

Beyond those implemented for compatibility� as supports one additional assembler di�
rective for the HPPA� �param� It conveys register argument locations for static functions�
Its syntax closely follows the �export directive�

These are the additional directives in as for the HPPA�

�block n
�blockz n Reserve n bytes of storage� and initialize them to zero�

�call Mark the beginning of a procedure call� Only the special case with no arguments
is allowed�

�callinfo � param�value� � � � � � �ag� � � � �

Specify a number of parameters and �ags that de�ne the environment for a
procedure�

param may be any of �frame� �frame size�� �entry�gr� �end of general regis�
ter range�� �entry�fr� �end of �oat register range�� �entry�sr� �end of space
register range��

The values for �ag are �calls� or �caller� �proc has subroutines�� �no�calls�
�proc does not call subroutines�� �save�rp� �preserve return pointer�� �save�sp�
�proc preserves stack pointer�� �no�unwind� �do not unwind this proc�� �hpux�int�
�proc is interrupt routine��

�code Assemble into the standard section called ��TEXT��� subsection ��CODE���

�copyright �string�
In the SOM object format� insert string into the object code� marked as a
copyright string�

�copyright �string�
In the ELF object format� insert string into the object code� marked as a version
string�

�enter Not yet supported� the assembler rejects programs containing this directive�

�entry Mark the beginning of a procedure�

�exit Mark the end of a procedure�

� Using as

�export name � �typ � � �param�r �
Make a procedure name available to callers� typ� if present� must be one
of �absolute�� �code� �ELF only� not SOM�� �data�� �entry�� �data�� �entry��
�millicode�� �plabel�� �pri�prog�� or �sec�prog��

param� if present� provides either relocation information for the procedure ar�
guments and result� or a privilege level� param may be �argwn� �where n ranges
from 	 to
� and indicates one of four one�word arguments�� �rtnval� �the pro�
cedure�s result�� or �priv�lev� �privilege level�� For arguments or the result� r
speci�es how to relocate� and must be one of �no� �not relocatable�� �gr� �argu�
ment is in general register�� �fr� �in �oating point register�� or �fu� �upper half
of �oat register�� For �priv�lev�� r is an integer�

�half n De�ne a two�byte integer constant n� synonym for the portable as directive
�short�

�import name � �typ �

Converse of �export� make a procedure available to call� The arguments use
the same conventions as the �rst two arguments for �export�

�label name
De�ne name as a label for the current assembly location�

�leave Not yet supported� the assembler rejects programs containing this directive�

�origin lc
Advance location counter to lc� Synonym for the No value for **as��!

portable directive �org�

�param name � �typ � � �param�r �
Similar to �export� but used for static procedures�

�proc Use preceding the �rst statement of a procedure�

�procend Use following the last statement of a procedure�

label �reg expr
Synonym for �equ� de�ne label with the absolute expression expr as its value�

�space secname � �params �
Switch to section secname� creating a new section by that name if necessary�
You may only use params when creating a new section� not when switching
to an existing one� secname may identify a section by number rather than by
name�

If speci�ed� the list params declares attributes of the section� identi�ed by key�
words� The keywords recognized are �spnum�exp� �identify this section by the
number exp� an absolute expression�� �sort�exp� �order sections according to
this sort key when linking� exp is an absolute expression�� �unloadable� �sec�
tion contains no loadable data�� �notdefined� �this section de�ned elsewhere��
and �private� �data in this section not available to other programs��

Chapter �� Machine Dependent Features
�

�spnum secnam
Allocate four bytes of storage� and initialize them with the section number of
the section named secnam� �You can de�ne the section number with the HPPA
�space directive��

�string �str�
Copy the characters in the string str to the object �le� See Section ��
����
�Strings�� page ��� for information on escape sequences you can use in as strings�

Warning� The HPPA version of �string di	ers from the usual as de�nition�
it does not write a zero byte after copying str�

�stringz �str�
Like �string� but appends a zero byte after copying str to object �le�

�subspa name � �params �
�nsubspa name � �params �

Similar to �space� but selects a subsection name within the current section�
You may only specify params when you create a subsection �in the �rst instance
of �subspa for this name��

If speci�ed� the list params declares attributes of the subsection� identi�ed
by keywords� The keywords recognized are �quad�expr� ��quadrant� for this
subsection�� �align�expr� �alignment for beginning of this subsection� a power
of two�� �access�expr� �value for �access rights� �eld�� �sort�expr� �sorting
order for this subspace in link�� �code�only� �subsection contains only code��
�unloadable� �subsection cannot be loaded into memory�� �common� �subsection
is common block�� �dup�comm� �initialized data may have duplicate names�� or
�zero� �subsection is all zeros� do not write in object �le��

�nsubspa always creates a new subspace with the given name� even if one with
the same name already exists�

�version �str�
Write str as version identi�er in object code�

����� Opcodes

For detailed information on the HPPA machine instruction set� see PA�RISC Architec�
ture and Instruction Set Reference Manual �HP �������������

�� Using as

��� ����	 Dependent Features

����� Options

The ����
 has no machine dependent options�

����� AT�T Syntax versus Intel Syntax

In order to maintain compatibility with the output of gcc� as supports AT"T System
V���
 assembler syntax� This is quite di	erent from Intel syntax� We mention these
di	erences because almost all ����
 documents used only Intel syntax� Notable di	erences
between the two syntaxes are�

� AT"T immediate operands are preceded by ���� Intel immediate operands are undelim�
ited �Intel �push
� is AT"T �pushl �
��� AT"T register operands are preceded by �#��
Intel register operands are undelimited� AT"T absolute �as opposed to PC relative�
jump�call operands are pre�xed by ���� they are undelimited in Intel syntax�

� AT"T and Intel syntax use the opposite order for source and destination operands�
Intel �add eax�
� is �addl �
� #eax�� The �source� dest� convention is maintained
for compatibility with previous Unix assemblers�

� In AT"T syntax the size of memory operands is determined from the last character of
the opcode name� Opcode su�xes of �b�� �w�� and �l� specify byte ���bit�� word ��
�bit��
and long ��
�bit� memory references� Intel syntax accomplishes this by pre�xes memory
operands �not the opcodes themselves� with �byte ptr�� �word ptr�� and �dword ptr��
Thus� Intel �mov al� byte ptr foo� is �movb foo� #al� in AT"T syntax�

� Immediate form long jumps and calls are �lcall�ljmp �section� �o�set� in AT"T syn�
tax� the Intel syntax is �call�jmp far section�o�set�� Also� the far return instruction
is �lret �stack�adjust� in AT"T syntax� Intel syntax is �ret far stack�adjust��

� The AT"T assembler does not provide support for multiple section programs� Unix
style systems expect all programs to be single sections�

����� Opcode Naming

Opcode names are su�xed with one character modi�ers which specify the size of
operands� The letters �b�� �w�� and �l� specify byte� word� and long operands� If no su�x is
speci�ed by an instruction and it contains no memory operands then as tries to �ll in the
missing su�x based on the destination register operand �the last one by convention�� Thus�
�mov #ax� #bx� is equivalent to �movw #ax� #bx�� also� �mov ��� #bx� is equivalent to �movw
��� #bx�� Note that this is incompatible with the AT"T Unix assembler which assumes
that a missing opcode su�x implies long operand size� �This incompatibility does not a	ect
compiler output since compilers always explicitly specify the opcode su�x��

Almost all opcodes have the same names in AT"T and Intel format� There are a few
exceptions� The sign extend and zero extend instructions need two sizes to specify them�
They need a size to sign�zero extend from and a size to zero extend to� This is accomplished
by using two opcode su�xes in AT"T syntax� Base names for sign extend and zero extend
are �movs� � �� and �movz� � �� in AT"T syntax ��movsx� and �movzx� in Intel syntax�� The

Chapter �� Machine Dependent Features ��

opcode su�xes are tacked on to this base name� the from su�x before the to su�x� Thus�
�movsbl #al� #edx� is AT"T syntax for �move sign extend from #al to #edx�� Possible
su�xes� thus� are �bl� �from byte to long�� �bw� �from byte to word�� and �wl� �from word
to long��

The Intel�syntax conversion instructions

� �cbw� � sign�extend byte in �#al� to word in �#ax��

� �cwde� � sign�extend word in �#ax� to long in �#eax��

� �cwd� � sign�extend word in �#ax� to long in �#dx�#ax��

� �cdq� � sign�extend dword in �#eax� to quad in �#edx�#eax��

are called �cbtw�� �cwtl�� �cwtd�� and �cltd� in AT"T naming� as accepts either naming for
these instructions�

Far call�jump instructions are �lcall� and �ljmp� in AT"T syntax� but are �call far�
and �jump far� in Intel convention�

����	 Register Naming

Register operands are always pre�xes with �#�� The ����
 registers consist of

� the � �
�bit registers �#eax� �the accumulator�� �#ebx�� �#ecx�� �#edx�� �#edi�� �#esi��
�#ebp� �the frame pointer�� and �#esp� �the stack pointer��

� the � �
�bit low�ends of these� �#ax�� �#bx�� �#cx�� �#dx�� �#di�� �#si�� �#bp�� and �#sp��

� the � ��bit registers� �#ah�� �#al�� �#bh�� �#bl�� �#ch�� �#cl�� �#dh�� and �#dl� �These are
the high�bytes and low�bytes of �#ax�� �#bx�� �#cx�� and �#dx��

� the
 section registers �#cs� �code section�� �#ds� �data section�� �#ss� �stack section��
�#es�� �#fs�� and �#gs��

� the � processor control registers �#cr	�� �#cr��� and �#cr
��

� the
 debug registers �#db	�� �#db��� �#db��� �#db
�� �#db��� and �#db���

� the
 test registers �#tr�� and �#tr���

� the � �oating point register stack �#st� or equivalently �#st�	��� �#st����� �#st�����
�#st�
��� �#st�
��� �#st����� �#st����� and �#st�����

����� Opcode Pre
xes

Opcode pre�xes are used to modify the following opcode� They are used to repeat
string instructions� to provide section overrides� to perform bus lock operations� and to give
operand and address size ��
�bit operands are speci�ed in an instruction by pre�xing what
would normally be �
�bit operands with a �operand size� opcode pre�x�� Opcode pre�xes
are usually given as single�line instructions with no operands� and must directly precede
the instruction they act upon� For example� the �scas� �scan string� instruction is repeated
with�

repne
scas

Here is a list of opcode pre�xes�

�
 Using as

� Section override pre�xes �cs�� �ds�� �ss�� �es�� �fs�� �gs�� These are automatically added
by specifying using the section�memory�operand form for memory references�

� Operand�Address size pre�xes �data��� and �addr��� change �
�bit operands�addresses
into �
�bit operands�addresses� Note that �
�bit addressing modes �i�e� ���
 and ��
�

addressing modes� are not supported �yet��

� The bus lock pre�x �lock� inhibits interrupts during execution of the instruction it
precedes� �This is only valid with certain instructions� see a ����
 manual for details��

� The wait for coprocessor pre�x �wait� waits for the coprocessor to complete the current
instruction� This should never be needed for the ����
������ combination�

� The �rep�� �repe�� and �repne� pre�xes are added to string instructions to make them
repeat �#ecx� times�

����� Memory References

An Intel syntax indirect memory reference of the form

section��base � index�scale � disp�

is translated into the AT"T syntax

section�disp�base� index� scale�

where base and index are the optional �
�bit base and index registers� disp is the optional
displacement� and scale� taking the values ��
� �� and �� multiplies index to calculate the
address of the operand� If no scale is speci�ed� scale is taken to be �� section speci�es
the optional section register for the memory operand� and may override the default section
register �see a ����
 manual for section register defaults�� Note that section overrides in
AT"T syntax must have be preceded by a �#�� If you specify a section override which
coincides with the default section register� as does not output any section register override
pre�xes to assemble the given instruction� Thus� section overrides can be speci�ed to
emphasize which section register is used for a given memory operand�

Here are some examples of Intel and AT"T style memory references�

AT"T� ��
�#ebp��� Intel� ��ebp �
��
base is �#ebp�� disp is ��
�� section is missing� and the default section is used
��#ss� for addressing with �#ebp� as the base register�� index� scale are both
missing�

AT"T� �foo��#eax�
��� Intel� ��foo � eax�
��
index is �#eax� �scaled by a scale ��� disp is �foo�� All other �elds are missing�
The section register here defaults to �#ds��

AT"T� �foo������ Intel ��foo��
This uses the value pointed to by �foo� as a memory operand� Note that base
and index are both missing� but there is only one ���� This is a syntactic
exception�

AT"T� �#gs�foo�� Intel �gs�foo�
This selects the contents of the variable �foo� with section register section being
�#gs��

Chapter �� Machine Dependent Features ��

Absolute �as opposed to PC relative� call and jump operands must be pre�xed with ����
If no ��� is speci�ed� as always chooses PC relative addressing for jump�call labels�

Any instruction that has a memory operand must specify its size �byte� word� or long�
with an opcode su�x ��b�� �w�� or �l�� respectively��

����� Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible displacements� This
is accomplished by using byte ���bit� displacement jumps whenever the target is su�ciently
close� If a byte displacement is insu�cient a long ��
�bit� displacement is used� We do
not support word ��
�bit� displacement jumps �i�e� pre�xing the jump instruction with the
�addr��� opcode pre�x�� since the ����
 insists upon masking �#eip� to �
 bits after the
word displacement is added�

Note that the �jcxz�� �jecxz�� �loop�� �loopz�� �loope�� �loopnz� and �loopne� instruc�
tions only come in byte displacements� so that if you use these instructions �gcc does not
use them� you may get an error message �and incorrect code�� The AT"T ����
 assembler
tries to get around this problem by expanding �jcxz foo� to

jcxz cx�zero
jmp cx�nonzero

cx�zero� jmp foo
cx�nonzero�

����� Floating Point

All ����� �oating point types except packed BCD are supported� �BCD support may
be added without much di�culty�� These data types are �
�� �
�� and
�� bit integers�
and single ��
�bit�� double �
��bit�� and extended ����bit� precision �oating point� Each
supported type has an opcode su�x and a constructor associated with it� Opcode su�xes
specify operand�s data types� Constructors build these data types into memory�

� Floating point constructors are ��float� or ��single�� ��double�� and ��tfloat� for
�
��
��� and ���bit formats� These correspond to opcode su�xes �s�� �l�� and �t�� �t�
stands for temporary real� and that the ����� only supports this format via the �fldt�
�load temporary real to stack top� and �fstpt� �store temporary real and pop stack�
instructions�

� Integer constructors are ��word�� ��long� or ��int�� and ��quad� for the �
�� �
�� and

��bit integer formats� The corresponding opcode su�xes are �s� �single�� �l� �long��
and �q� �quad�� As with the temporary real format the
��bit �q� format is only present
in the �fildq� �load quad integer to stack top� and �fistpq� �store quad integer and
pop stack� instructions�

Register to register operations do not require opcode su�xes� so that �fst #st� #st����
is equivalent to �fstl #st� #st�����

����� Writing ���bit Code

While GAS normally writes only �pure� �
�bit i��
 code� it has limited support for
writing code to run in real mode or in �
�bit protected mode code segments� To do this�

�� Using as

insert a ��code��� directive before the assembly language instructions to be run in �
�bit
mode� You can switch GAS back to writing normal �
�bit code with the ��code
�� directive�

GAS understands exactly the same assembly language syntax in �
�bit mode as in �
�
bit mode� The function of any given instruction is exactly the same regardless of mode� as
long as the resulting object code is executed in the mode for which GAS wrote it� So� for
example� the �ret� mnemonic produces a �
�bit return instruction regardless of whether it
is to be run in �
�bit or �
�bit mode� �If GAS is in �
�bit mode� it will add an operand size
pre�x to the instruction to force it to be a �
�bit return��

This means� for one thing� that you can use gnu cc to write code to be run in real mode
or �
�bit protected mode� Just insert the statement �asm���code������ at the beginning
of your C source �le� and while gnu cc will still be generating �
�bit code� GAS will
automatically add all the necessary size pre�xes to make that code run in �
�bit mode� Of
course� since gnu cc only writes small�model code �it doesn�t know how to attach segment
selectors to pointers like native x�
 compilers do�� any �
�bit code you write with gnu

cc will essentially be limited to a
�K address space� Also� there will be a code size and
performance penalty due to all the extra address and operand size pre�xes GAS has to add
to the instructions�

Note that placing GAS in �
�bit mode does not mean that the resulting code will nec�
essarily run on a �
�bit pre�����
 processor� To write code that runs on such a processor�
you would have to refrain from using any �
�bit constructs which require GAS to output
address or operand size pre�xes� At the moment this would be rather di�cult� because
GAS currently supports only �
�bit addressing modes� when writing �
�bit code� it always
outputs address size pre�xes for any instruction that uses a non�register addressing mode�
So you can write code that runs on �
�bit processors� but only if that code never references
memory�

�����
 Notes

There is some trickery concerning the �mul� and �imul� instructions that deserves mention�
The �
�� �
�� and
��bit expanding multiplies �base opcode �	xf��� extension � for �mul� and
� for �imul�� can be output only in the one operand form� Thus� �imul #ebx� #eax� does not
select the expanding multiply� the expanding multiply would clobber the �#edx� register� and
this would confuse gcc output� Use �imul #ebx� to get the
��bit product in �#edx�#eax��

We have added a two operand form of �imul� when the �rst operand is an immediate
mode expression and the second operand is a register� This is just a shorthand� so that�
multiplying �#eax� by
�� for example� can be done with �imul ���� #eax� rather than �imul
���� #eax� #eax��

Chapter �� Machine Dependent Features ��

��� Intel ���	� Dependent Features

����� i��
 Command�line Options

�ACA � �ACA�A � �ACB � �ACC � �AKA � �AKB � �AKC � �AMC

Select the ���
� architecture� Instructions or features not supported by the
selected architecture cause fatal errors�

��ACA� is equivalent to ��ACA�A�� ��AKC� is equivalent to ��AMC�� Synonyms are
provided for compatibility with other tools�

If you do not specify any of these options� as generates code for any instruction
or feature that is supported by some version of the �
� �even if this means mix�
ing architectures��� In principle� as attempts to deduce the minimal su�cient
processor type if none is speci�ed� depending on the object code format� the
processor type may be recorded in the object �le� If it is critical that the as

output match a speci�c architecture� specify that architecture explicitly�

�b Add code to collect information about conditional branches taken� for later
optimization using branch prediction bits� �The conditional branch instructions
have branch prediction bits in the CA� CB� and CC architectures�� If BR
represents a conditional branch instruction� the following represents the code
generated by the assembler when ��b� is speci�ed�

call increment routine
�word 	 � pre�counter

Label� BR
call increment routine
�word 	 � post�counter

The counter following a branch records the number of times that branch was
not taken� the di	erenc between the two counters is the number of times the
branch was taken�

A table of every such Label is also generated� so that the external postprocessor
gbr��	 �supplied by Intel� can locate all the counters� This table is always la�
belled ���BRANCH�TABLE���� this is a local symbol to permit collecting statistics
for many separate object �les� The table is word aligned� and begins with a
two�word header� The �rst word� initialized to �� is used in maintaining linked
lists of branch tables� The second word is a count of the number of entries
in the table� which follow immediately� each is a word� pointing to one of the
labels illustrated above�

�
 Using as

�NEXT COUNT� N �BRLAB �
� � �

�BRLAB N

BRANCH TABLE layout

The �rst word of the header is used to locate multiple branch tables� since each
object �le may contain one� Normally the links are maintained with a call to
an initialization routine� placed at the beginning of each function in the �le�
The gnu C compiler generates these calls automatically when you give it a ��b�
option� For further details� see the documentation of �gbr��	��

�no�relax

Normally� Compare�and�Branch instructions with targets that require displace�
ments greater than �� bits �or that have external targets� are replaced with
the corresponding compare �or �chkbit�� and branch instructions� You can use
the ��no�relax� option to specify that as should generate errors instead� if the
target displacement is larger than �� bits�

This option does not a	ect the Compare�and�Jump instructions� the code emit�
ted for them is always adjusted when necessary �depending on displacement
size�� regardless of whether you use ��no�relax��

����� Floating Point

as generates ieee �oating�point numbers for the directives ��float�� ��double�� ��extended��
and ��single��

����� i��
 Machine Directives

�bss symbol� length� align
Reserve length bytes in the bss section for a local symbol� aligned to the power
of two speci�ed by align� length and alignmust be positive absolute expressions�
This directive di	ers from ��lcomm� only in that it permits you to specify an
alignment� See Section ���� ��lcomm�� page ���

�extended �onums
�extended expects zero or more �onums� separated by commas� for each
�onum� ��extended� emits an ieee extended�format ����bit� �oating�point
number�

�leafproc call�lab� bal�lab
You can use the ��leafproc� directive in conjunction with the optimized callj

instruction to enable faster calls of leaf procedures� If a procedure is known to
call no other procedures� you may de�ne an entry point that skips procedure
prolog code �and that does not depend on system�supplied saved context�� and
declare it as the bal�lab using ��leafproc�� If the procedure also has an entry
point that goes through the normal prolog� you can specify that entry point as
call�lab�

Chapter �� Machine Dependent Features ��

A ��leafproc� declaration is meant for use in conjunction with the optimized
call instruction �callj�� the directive records the data needed later to choose
between converting the �callj� into a bal or a call�

call�lab is optional� if only one argument is present� or if the two arguments are
identical� the single argument is assumed to be the bal entry point�

�sysproc name� index
The ��sysproc� directive de�nes a name for a system procedure� After you
de�ne it using ��sysproc�� you can use name to refer to the system procedure
identi�ed by index when calling procedures with the optimized call instruction
�callj��

Both arguments are required� index must be between � and �� �inclusive��

����	 i��
 Opcodes

All Intel �
� machine instructions are supported� see Section ����� �i�
� Command�line
Options�� page �� for a discussion of selecting the instruction subset for a particular �
�
architecture�

Some opcodes are processed beyond simply emitting a single corresponding instruction�
�callj�� and Compare�and�Branch or Compare�and�Jump instructions with target displace�
ments larger than �� bits�

����	�� callj

You can write callj to have the assembler or the linker determine the most appro�
priate form of subroutine call� �call�� �bal�� or �calls�� If the assembly source contains
enough information�a ��leafproc� or ��sysproc� directive de�ning the operand�then as

translates the callj� if not� it simply emits the callj� leaving it for the linker to resolve�

����	�� Compare�and�Branch

The �
� architectures provide combined Compare�and�Branch instructions that permit
you to store the branch target in the lower �� bits of the instruction word itself� However�
if you specify a branch target far enough away that its address won�t �t in �� bits� the
assembler can either issue an error� or convert your Compare�and�Branch instruction into
separate instructions to do the compare and the branch�

Whether as gives an error or expands the instruction depends on two choices you can
make� whether you use the ��no�relax� option� and whether you use a �Compare and
Branch� instruction or a �Compare and Jump� instruction� The �Jump� instructions are
always expanded if necessary� the �Branch� instructions are expanded when necessary un�
less you specify �no�relax�in which case as gives an error instead�

These are the Compare�and�Branch instructions� their �Jump� variants� and the instruc�
tion pairs they may expand into�

Compare and

Branch Jump Expanded to

�� Using as

bbc chkbit� bno

bbs chkbit� bo

cmpibe cmpije cmpi� be

cmpibg cmpijg cmpi� bg

cmpibge cmpijge cmpi� bge

cmpibl cmpijl cmpi� bl

cmpible cmpijle cmpi� ble

cmpibno cmpijno cmpi� bno

cmpibne cmpijne cmpi� bne

cmpibo cmpijo cmpi� bo

cmpobe cmpoje cmpo� be

cmpobg cmpojg cmpo� bg

cmpobge cmpojge cmpo� bge

cmpobl cmpojl cmpo� bl

cmpoble cmpojle cmpo� ble

cmpobne cmpojne cmpo� bne

Chapter �� Machine Dependent Features ��

���� M	��x� Dependent Features

���
�� M��
x
 Options

The Motorola
��x� version of as has a few machine dependent options�

You can use the ��l� option to shorten the size of references to unde�ned symbols� If you
do not use the ��l� option� references to unde�ned symbols are wide enough for a full long
��
 bits�� �Since as cannot know where these symbols end up� as can only allocate space
for the linker to �ll in later� Since as does not know how far away these symbols are� it
allocates as much space as it can�� If you use this option� the references are only one word
wide ��
 bits�� This may be useful if you want the object �le to be as small as possible�
and you know that the relevant symbols are always less than �� bits away�

For some con�gurations� especially those where the compiler normally does not prepend
an underscore to the names of user variables� the assembler requires a �#� before any use of
a register name� This is intended to let the assembler distinguish between C variables and
functions named �a	� through �a��� and so on� The �#� is always accepted� but is not required
for certain con�gurations� notably �sun
�� The ���register�prefix�optional� option may
be used to permit omitting the �#� even for con�gurations for which it is normally required�
If this is done� it will generally be impossible to refer to C variables and functions with the
same names as register names�

Normally the character ��� is treated as a comment character� which means that it can
not be used in expressions� The ���bitwise�or� option turns ��� into a normal character�
In this mode� you must either use C style comments� or start comments with a ��� character
at the beginning of a line�

If you use an addressing mode with a base register without specifying the size� as will
normally use the full �
 bit value� For example� the addressing mode �#a)�#d	�� is equiv�
alent to �#a)�#d	�l��� You may use the ���base�size�default���� option to tell as to
default to using the �
 bit value� In this case� �#a)�#d	�� is equivalent to �#a)�#d	�w���
You may use the ���base�size�default�
�� option to restore the default behaviour�

If you use an addressing mode with a displacement� and the value of the displacement
is not known� as will normally assume that the value is �
 bits� For example� if the sym�
bol �disp� has not been de�ned� as will assemble the addressing mode �#a)�disp�#d	��
as though �disp� is a �
 bit value� You may use the ���disp�size�default���� op�
tion to tell as to instead assume that the displacement is �
 bits� In this case� as

will assemble �#a)�disp�#d	�� as though �disp� is a �
 bit value� You may use the
���disp�size�default�
�� option to restore the default behaviour�

as can assemble code for several di	erent members of the Motorola
��x� family� The
default depends upon how as was con�gured when it was built� normally� the default is to
assemble code for the
��
� microprocessor� The following options may be used to change
the default� These options control which instructions and addressing modes are permitted�
The members of the
��x� family are very similar� For detailed information about the
di	erences� see the Motorola manuals�

�� Using as

��m��			�
��m��ec			�
��m��hc			�
��m��hc		��
��m��		��
��m��
	��
��m��
	��
��m��
	��
��m��
���
��m��
��� Assemble for the
����� ��m��		��� ��m��
	��� and so on are synonyms for

��m��			�� since the chips are the same from the point of view of the assembler�

��m��	�	� Assemble for the
�����

��m��	�	�
��m��ec	�	�

Assemble for the
��
�� This is normally the default�

��m��	
	�
��m��ec	
	�

Assemble for the
�����

��m��	
	�
��m��ec	
	�

Assemble for the
�����

��m��	�	�
��m��ec	�	�

Assemble for the
��
��

��mcpu
��
��m��

	�
��m��

��
��m��

��
��m��

�
��m��

�
��m��

��
��m��

	�
��m��

��
��m��

��
��m��
�	� Assemble for the CPU�
 family of chips�

��m��		� Assemble for the ColdFire family of chips�

��m������
��m������ Assemble
���� �oating point instructions� This is the default for the
��
��

����� and the CPU�
� The
���� and
��
� always support �oating point
instructions�

Chapter �� Machine Dependent Features ��

��mno�������
Do not assemble
���� �oating point instructions� This is the default for
����
and the
����� The
���� and
��
� always support �oating point instructions�
even if this option is used�

��m������ Assemble
���� MMU instructions� This is the default for the
��
��
�����
and
��
�� The
���� accepts a somewhat di	erent set of MMU instructions�
��m������ and ��m��	
	� should not be used together�

��mno�������
Do not assemble
���� MMU instructions� This is the default for the
�����

����� and the CPU�
� The
���� accepts a somewhat di	erent set of MMU
instructions�

���
�� Syntax

This syntax for the Motorola
��x� was developed at mit�

The
��x� version of as uses instructions names and syntax compatible with the Sun
assembler� Intervening periods are ignored� for example� �movl� is equivalent to �mov�l��

In the following table apc stands for any of the address registers ��#a	� through �#a����
the program counter ��#pc��� the zero�address relative to the program counter ��#zpc��� a
suppressed address register ��#za	� through �#za���� or it may be omitted entirely� The use
of size means one of �w� or �l�� and it may be omitted� along with the leading colon� unless
a scale is also speci�ed� The use of scale means one of ���� ���� �
�� or ���� and it may always
be omitted along with the leading colon�

The following addressing modes are understood�

Immediate
��number�

Data Register
�#d	� through �#d��

Address Register
�#a	� through �#a��
�#a�� is also known as �#sp�� i�e� the Stack Pointer� #a� is also known as �#fp��
the Frame Pointer�

Address Register Indirect
�#a)� through �#a�)�

Address Register Postincrement
�#a)�� through �#a�)��

Address Register Predecrement
�#a)�� through �#a�)��

Indirect Plus O�set
�apc)�number��

Index �apc)�number�register�size�scale��

The number may be omitted�

�
 Using as

Postindex �apc)�number�)�onumber�register�size�scale��

The onumber or the register� but not both� may be omitted�

Preindex �apc)�number�register�size�scale�)�onumber��

The number may be omitted� Omitting the register produces the Postindex
addressing mode�

Absolute �symbol�� or �digits�� optionally followed by ��b�� ��w�� or ��l��

���
�� Motorola Syntax

The standard Motorola syntax for this chip di	ers from the syntax already discussed
�see Section �����
 �Syntax�� page ���� as can accept Motorola syntax for operands� even if
mit syntax is used for other operands in the same instruction� The two kinds of syntax are
fully compatible�

In the following table apc stands for any of the address registers ��#a	� through �#a����
the program counter ��#pc��� the zero�address relative to the program counter ��#zpc��� or
a suppressed address register ��#za	� through �#za���� The use of size means one of �w� or
�l�� and it may always be omitted along with the leading dot� The use of scale means one
of ���� ���� �
�� or ���� and it may always be omitted along with the leading asterisk�

The following additional addressing modes are understood�

Address Register Indirect
��#a	�� through ��#a���
�#a�� is also known as �#sp�� i�e� the Stack Pointer� #a� is also known as �#fp��
the Frame Pointer�

Address Register Postincrement
��#a	��� through ��#a����

Address Register Predecrement
���#a	�� through ���#a���

Indirect Plus O�set
�number��a	�� through �number��a���� or �number��pc���

The number may also appear within the parentheses� as in ��number��a	���
When used with the pc� the number may be omitted �with an address register�
omitting the number produces Address Register Indirect mode��

Index �number�apc�register�size�scale��

The number may be omitted� or it may appear within the parentheses� The
apc may be omitted� The register and the apc may appear in either order� If
both apc and register are address registers� and the size and scale are omitted�
then the �rst register is taken as the base register� and the second as the index
register�

Postindex ���number�apc��register�size�scale�onumber��

The onumber� or the register� or both� may be omitted� Either the number or
the apc may be omitted� but not both�

Chapter �� Machine Dependent Features ��

Preindex ���number�apc�register�size�scale��onumber��

The number� or the apc� or the register� or any two of them� may be omitted�
The onumber may be omitted� The register and the apc may appear in either
order� If both apc and register are address registers� and the size and scale are
omitted� then the �rst register is taken as the base register� and the second as
the index register�

���
�	 Floating Point

Packed decimal �P� format �oating literals are not supported� Feel free to add the code�

The �oating point formats generated by directives are these�

�float Single precision �oating point constants�

�double Double precision �oating point constants�

�extend

�ldouble Extended precision �long double� �oating point constants�

���
�� ��
x
 Machine Directives

In order to be compatible with the Sun assembler the
��x� assembler understands the
following directives�

�data� This directive is identical to a �data � directive�

�data� This directive is identical to a �data � directive�

�even This directive is a special case of the �align directive� it aligns the output to
an even byte boundary�

�skip This directive is identical to a �space directive�

���
�� Opcodes

���
���� Branch Improvement

Certain pseudo opcodes are permitted for branch instructions� They expand to the
shortest branch instruction that reach the target� Generally these mnemonics are made by
substituting �j� for �b� at the start of a Motorola mnemonic�

The following table summarizes the pseudo�operations� A � �ags cases that are more
fully described after the table�

Displacement
��
� ��	�	 ��			��	

Pseudo�Op �BYTE WORD LONG LONG non�PC relative
��

jbsr �bsrs bsr bsrl jsr jsr
jra �bras bra bral jmp jmp

�� Using as

� jXX �bXXs bXX bXXl bNXs�jmpl bNXs�jmp
� dbXX �dbXX dbXX dbXX� bra� jmpl
� fjXX �fbXXw fbXXw fbXXl fbNXw�jmp

XX� condition
NX� negative of condition XX

��see full description below

jbsr

jra These are the simplest jump pseudo�operations� they always map to one partic�
ular machine instruction� depending on the displacement to the branch target�

jXX Here� �jXX � stands for an entire family of pseudo�operations� where XX is a
conditional branch or condition�code test� The full list of pseudo�ops in this
family is�

jhi jls jcc jcs jne jeq jvc
jvs jpl jmi jge jlt jgt jle

For the cases of non�PC relative displacements and long displacements on the

���� or
����� as issues a longer code fragment in terms of NX� the opposite
condition to XX� For example� for the non�PC relative case�

jXX foo

gives

bNXs oof
jmp foo

oof�

dbXX The full family of pseudo�operations covered here is

dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble
dbf dbra dbt

Other than for word and byte displacements� when the source reads �dbXX
foo�� as emits

dbXX oo�
bra oo�

oo��jmpl foo
oo��

fjXX This family includes

fjne fjeq fjge fjlt fjgt fjle fjf
fjt fjgl fjgle fjnge fjngl fjngle fjngt
fjnle fjnlt fjoge fjogl fjogt fjole fjolt
fjor fjseq fjsf fjsne fjst fjueq fjuge
fjugt fjule fjult fjun

For branch targets that are not PC relative� as emits

fbNX oof
jmp foo

Chapter �� Machine Dependent Features ��

oof�

when it encounters �fjXX foo��

���
���� Special Characters

The immediate character is ��� for Sun compatibility� The line�comment character is ���
�unless the ���bitwise�or� option is used�� If a ��� appears at the beginning of a line� it is
treated as a comment unless it looks like �� line file�� in which case it is treated normally�

�
 Using as

���� MIPS Dependent Features

gnu as for mips architectures supports several di	erent mips processors� and MIPS
ISA levels I through IV� For information about the mips instruction set� see MIPS RISC
Architecture� by Kane and Heindrich �Prentice�Hall�� For an overview of mips assembly
conventions� see �Appendix D� Assembly Language Programming� in the same work�

������ Assembler options

The mips con�gurations of gnu as support these special options�

�G num This option sets the largest size of an object that can be referenced implicitly
with the gp register� It is only accepted for targets that use ecoff format� The
default value is ��

�EB

�EL Any mips con�guration of as can select big�endian or little�endian output at run
time �unlike the other gnu development tools� which must be con�gured for one
or the other�� Use ��EB� to select big�endian output� and ��EL� for little�endian�

�mips�

�mips�

�mips

�mips
 Generate code for a particularMIPS Instruction Set Architecture level� ��mips��
corresponds to the r���� and r���� processors� ��mips�� to the r���� proces�
sor� ��mips
� to the r���� processor� and ��mips
� to the r���� and r�����

processors� You can also switch instruction sets during the assembly� see
Section ������ �Directives to override the ISA level�� page ���

�mips��

�no�mips��

Generate code for the MIPS �
 processor� This is equivalent to putting ��set
mips��� at the start of the assembly �le� ��no�mips��� turns o	 this option�

�m
��	

�no�m
��	

Generate code for the MIPS r���� chip� This tells the assembler to accept
the �mad� and �madu� instruction� and to not schedule �nop� instructions around
accesses to the �HI� and �LO� registers� ��no�m
��	� turns o	 this option�

�m
	�	

�no�m
	�	

Generate code for the LSI r���� chip� This tells the assembler to accept the
r���� speci�c instructions ��addciu�� �ffc�� etc��� and to not schedule �nop�
instructions around accesses to the �HI� and �LO� registers� ��no�m
	�	� turns
o	 this option�

�mcpu�CPU
Generate code for a particular MIPS cpu� This has little e	ect on the assembler�
but it is passed by gcc�

Chapter �� Machine Dependent Features ��

�nocpp This option is ignored� It is accepted for command�line compatibility with
other assemblers� which use it to turn o	 C style preprocessing� With gnu as�
there is no need for ��nocpp�� because the gnu assembler itself never runs the
C preprocessor�

��trap

��no�break

as automatically macro expands certain division and multiplication instruc�
tions to check for over�ow and division by zero� This option causes as to
generate code to take a trap exception rather than a break exception when an
error is detected� The trap instructions are only supported at Instruction Set
Architecture level
 and higher�

��break

��no�trap

Generate code to take a break exception rather than a trap exception when an
error is detected� This is the default�

������ MIPS ECOFF object code

Assembling for a mips ecoff target supports some additional sections besides the usual
�text� �data and �bss� The additional sections are �rdata� used for read�only data�
�sdata� used for small data� and �sbss� used for small common objects�

When assembling for ecoff� the assembler uses the �gp ����� register to form the
address of a �small object�� Any object in the �sdata or �sbss sections is considered
�small� in this sense� For external objects� or for objects in the �bss section� you can use
the gcc ��G� option to control the size of objects addressed via �gp� the default value is ��
meaning that a reference to any object eight bytes or smaller uses �gp� Passing ��G 	� to as

prevents it from using the �gp register on the basis of object size �but the assembler uses
�gp for objects in �sdata or sbss in any case�� The size of an object in the �bss section
is set by the �comm or �lcomm directive that de�nes it� The size of an external object may
be set with the �extern directive� For example� ��extern sym�
� declares that the object
at sym is � bytes in length� whie leaving sym otherwise unde�ned�

Using small ecoff objects requires linker support� and assumes that the �gp register
is correctly initialized �normally done automatically by the startup code�� mips ecoff

assembly code must not modify the �gp register�

������ Directives for debugging information

mips ecoff as supports several directives used for generating debugging information
which are not support by traditionalmips assemblers� These are �def� �endef� �dim� �file�
�scl� �size� �tag� �type� �val� �stabd� �stabn� and �stabs� The debugging information
generated by the three �stab directives can only be read by gdb� not by traditional mips
debuggers �this enhancement is required to fully support C�� debugging�� These directives
are primarily used by compilers� not assembly language programmers�

�� Using as

�����	 Directives to override the ISA level

gnu as supports an additional directive to change the mips Instruction Set Architecture
level on the �y� �set mipsn� n should be a number from � to �� A value from � to � makes
the assembler accept instructions for the corresponding isa level� from that point on in
the assembly� �set mipsn a	ects not only which instructions are permitted� but also how
certain macros are expanded� �set mips	 restores the isa level to its original level� either
the level you selected with command line options� or the default for your con�guration� You
can use this feature to permit speci�c r���� instructions while assembling in �
 bit mode�
Use this directive with care�

The directive ��set mips��� puts the assembler into MIPS �
 mode� in which it will
assemble instructions for the MIPS �
 processor� Use ��set nomips��� to return to normal
�
 bit mode�

Traditional mips assemblers do not support this directive�

������ Directives for extending MIPS �� bit instructions

By default� MIPS �
 instructions are automatically extended to �
 bits when necessary�
The directive ��set noautoextend� will turn this o	� When ��set noautoextend� is in
e	ect� any �
 bit instruction must be explicitly extended with the ��e� modi�er �e�g�� �li�e
�
��			��� The directive ��set autoextend� may be used to once again automatically
extend instructions when necessary�

This directive is only meaningful when in MIPS �
 mode� Traditional mips assemblers
do not support this directive�

������ Directive to mark data as an instruction

The �insn directive tells as that the following data is actually instructions� This makes a
di	erence in MIPS �
 mode� when loading the address of a label which precedes instructions�
as automatically adds � to the value� so that jumping to the loaded address will do the
right thing�

������ Directives to save and restore options

The directives �set push and �set pop may be used to save and restore the current
settings for all the options which are controlled by �set� The �set push directive saves the
current settings on a stack� The �set pop directive pops the stack and restores the settings�

These directives can be useful inside an macro which must change an option such as the
ISA level or instruction reordering but does not want to change the state of the code which
invoked the macro�

Traditional mips assemblers do not support these directives�

Chapter �� Machine Dependent Features ��

���� Hitachi SH Dependent Features

������ Options

as has no additional command�line options for the Hitachi SH family�

������ Syntax

�������� Special Characters

��� is the line comment character�

You can use ��� instead of a newline to separate statements�

Since ��� has no special meaning� you may use it in symbol names�

�������� Register Names

You can use the prede�ned symbols �r	�� �r��� �r��� �r
�� �r
�� �r��� �r��� �r��� �r��� �r���
�r�	�� �r���� �r���� �r�
�� �r�
�� and �r��� to refer to the SH registers�

The SH also has these control registers�

pr procedure register �holds return address�

pc program counter

mach

macl high and low multiply accumulator registers

sr status register

gbr global base register

vbr vector base register �for interrupt vectors�

�������� Addressing Modes

as understands the following addressing modes for the SH� Rn in the following refers to
any of the numbered registers� but not the control registers�

Rn Register direct

)Rn Register indirect

)�Rn Register indirect with pre�decrement

)Rn� Register indirect with post�increment

)�disp� Rn�
Register indirect with displacement

)�R	� Rn� Register indexed

)�disp� GBR�

GBR o	set

�� Using as

)�R	� GBR�

GBR indexed

addr
)�disp� PC�

PC relative address �for branch or for addressing memory�� The as implemen�
tation allows you to use the simpler form addr anywhere a PC relative address
is called for� the alternate form is supported for compatibility with other as�
semblers�

�imm Immediate data

������ Floating Point

The SH family has no hardware �oating point� but the �float directive generates ieee
�oating�point numbers for compatibility with other development tools�

�����	 SH Machine Directives

uaword

ualong as will issue a warning when a misaligned �word or �long directive is used�
You may use �uaword or �ualong to indicate that the value is intentionally
misaligned�

������ Opcodes

For detailed information on the SH machine instruction set� see SH�Microcomputer
User�s Manual �Hitachi Micro Systems� Inc���

as implements all the standard SH opcodes� No additional pseudo�instructions are
needed on this family� Note� however� that because as supports a simpler form of PC�
relative addressing� you may simply write �for example�

mov�l bar�r	

where other assemblers might require an explicit displacement to bar from the program
counter�

mov�l)�disp� PC�

Chapter �� Machine Dependent Features ��

���� SPARC Dependent Features

������ Options

The SPARC chip family includes several successive levels� using the same core instruction
set� but including a few additional instructions at each level� There are exceptions to this
however� For details on what instructions each variant supports� please see the chip�s
architecture reference manual�

By default� as assumes the core instruction set �SPARC v
�� but �bumps� the archi�
tecture level as needed� it switches to successively higher architectures as it encounters
instructions that only exist in the higher levels�

If not con�gured for SPARC v� �sparc�
����� GAS will not bump passed sparclite by
default� an option must be passed to enable the v� instructions�

GAS treats sparclite as being compatible with v�� unless an architecture is explicitly
requested� SPARC v� is always incompatible with sparclite�

�Av� � �Av� � �Av� � �Asparclet � �Asparclite

�Av�plus � �Av�plusa � �Av� � �Av�a

Use one of the ��A� options to select one of the SPARC architectures explicitly�
If you select an architecture explicitly� as reports a fatal error if it encounters
an instruction or feature requiring an incompatible or higher level�

��Av�plus� and ��Av�plusa� select a �
 bit environment�

��Av�� and ��Av�a� select a
� bit environment and are not available unless GAS
is explicitly con�gured with
� bit environment support�

��Av�plusa� and ��Av�a� enable the SPARC V� instruction set with Ultra�
SPARC extensions�

�xarch�v�plus � �xarch�v�plusa

For compatibility with the Solaris v� assembler� These options are equivalent
to �Av�plus and �Av�plusa� respectively�

�bump Warn whenever it is necessary to switch to another level� If an architecture level
is explicitly requested� GAS will not issue warnings until that level is reached�
and will then bump the level as required �except between incompatible levels��

�
� � ��
 Select the word size� either �
 bits or
� bits� These options are only available
with the ELF object �le format� and require that the necessary BFD support
has been included�

������ Enforcing aligned data

SPARC GAS normally permits data to be misaligned� For example� it permits the
�long pseudo�op to be used on a byte boundary� However� the native SunOS and Solaris
assemblers issue an error when they see misaligned data�

You can use the ��enforce�aligned�data option to make SPARC GAS also issue an
error about misaligned data� just as the SunOS and Solaris assemblers do�

�
 Using as

The ��enforce�aligned�data option is not the default because gcc issues misaligned
data pseudo�ops when it initializes certain packed data structures �structures de�ned using
the packed attribute�� You may have to assemble with GAS in order to initialize packed
data structures in your own code�

������ Floating Point

The Sparc uses ieee �oating�point numbers�

�����	 Sparc Machine Directives

The Sparc version of as supports the following additional machine directives�

�align This must be followed by the desired alignment in bytes�

�common This must be followed by a symbol name� a positive number� and �bss�� This
behaves somewhat like �comm� but the syntax is di	erent�

�half This is functionally identical to �short�

�proc This directive is ignored� Any text following it on the same line is also ignored�

�reserve This must be followed by a symbol name� a positive number� and �bss�� This
behaves somewhat like �lcomm� but the syntax is di	erent�

�seg This must be followed by �text�� �data�� or �data��� It behaves like �text�
�data� or �data ��

�skip This is functionally identical to the �space directive�

�word On the Sparc� the �word directive produces �
 bit values� instead of the �
 bit
values it produces on many other machines�

�xword On the Sparc V� processor� the �xword directive produces
� bit values�

Chapter �� Machine Dependent Features ��

���� Z���� Dependent Features

The Z���� as supports both members of the Z���� family� the unsegmented Z���
� with
�
 bit addresses� and the segmented Z���� with
� bit addresses�

When the assembler is in unsegmented mode �speci�ed with the unsegm directive�� an
address takes up one word ��
 bit� sized register� When the assembler is in segmented
mode �speci�ed with the segm directive�� a
��bit address takes up a long ��
 bit� register�
See Section ������ �Assembler Directives for the Z������ page ��� for a list of other Z����
speci�c assembler directives�

���	�� Options

as has no additional command�line options for the Zilog Z���� family�

���	�� Syntax

���	���� Special Characters

��� is the line comment character�

You can use ��� instead of a newline to separate statements�

���	���� Register Names

The Z���� has sixteen �
 bit registers� numbered � to ��� You can refer to di	erent
sized groups of registers by register number� with the pre�x �r� for �
 bit registers� �rr� for
�
 bit registers and �rq� for
� bit registers� You can also refer to the contents of the �rst
eight �of the sixteen �
 bit registers� by bytes� They are named �rnh� and �rnl��

byte registers
r	l r	h r�h r�l r�h r�l r
h r
l
r
h r
l r�h r�l r�h r�l r�h r�l

word registers
r	 r� r� r
 r
 r� r� r� r� r� r�	 r�� r�� r�
 r�
 r��

long word registers
rr	 rr� rr
 rr� rr� rr�	 rr�� rr�

quad word registers
rq	 rq
 rq� rq��

���	���� Addressing Modes

as understands the following addressing modes for the Z�����

rn Register direct

)rn Indirect register

�� Using as

addr Direct� the �
 bit or
� bit address �depending on whether the assembler is in
segmented or unsegmented mode� of the operand is in the instruction�

address�rn�
Indexed� the �
 or
� bit address is added to the �
 bit register to produce the
�nal address in memory of the operand�

rn��imm� Base Address� the �
 or
� bit register is added to the �
 bit sign extended
immediate displacement to produce the �nal address in memory of the operand�

rn�rm� Base Index� the �
 or
� bit register rn is added to the sign extended �
 bit
index register rm to produce the �nal address in memory of the operand�

�xx Immediate data xx�

���	�� Assembler Directives for the Z�

The Z���� port of as includes these additional assembler directives� for compatibility
with other Z���� assemblers� As shown� these do not begin with ��� �unlike the ordinary as
directives��

segm Generates code for the segmented Z�����

unsegm Generates code for the unsegmented Z���
�

name Synonym for �file

global Synonym for �global

wval Synonym for �word

lval Synonym for �long

bval Synonym for �byte

sval Assemble a string� sval expects one string literal� delimited by single quotes�
It assembles each byte of the string into consecutive addresses� You can use the
escape sequence �#xx� �where xx represents a two�digit hexadecimal number�
to represent the character whose ascii value is xx� Use this feature to describe
single quote and other characters that may not appear in string literals as them�
selves� For example� the C statement �char �a � �he said ��it�s �	# off�����
is represented in Z���� assembly language �shown with the assembler output
in hex at the left� as

�����	�
 sval �he said #��it#��s �	#�� off#��#		�
�����
�	
�����
��
�
�	
�
	
���	�F��
����		

rsect synonym for �section

block synonym for �space

even special case of �align� aligns output to even byte boundary�

Chapter �� Machine Dependent Features ��

���	�	 Opcodes

For detailed information on the Z���� machine instruction set� see Z
			 Technical
Manual�

���� VAX Dependent Features

������ VAX Command�Line Options

The Vax version of as accepts any of the following options� gives a warning message
that the option was ignored and proceeds� These options are for compatibility with scripts
designed for other people�s assemblers�

�D �Debug�

�S �Symbol Table�

�T �Token Trace�

These are obsolete options used to debug old assemblers�

�d �Displacement size for JUMPs�

This option expects a number following the ��d�� Like options that expect �le�
names� the number may immediately follow the ��d� �old standard� or constitute
the whole of the command line argument that follows ��d� �gnu standard��

�V �Virtualize Interpass Temporary File�

Some other assemblers use a temporary �le� This option commanded them to
keep the information in active memory rather than in a disk �le� as always
does this� so this option is redundant�

�J �JUMPify Longer Branches�

Many �
�bit computers permit a variety of branch instructions to do the same
job� Some of these instructions are short �and fast� but have a limited range�
others are long �and slow� but can branch anywhere in virtual memory� Often
there are � �avors of branch� short� medium and long� Some other assemblers
would emit short and medium branches� unless told by this option to emit short
and long branches�

�t �Temporary File Directory�

Some other assemblers may use a temporary �le� and this option takes a �lename
being the directory to site the temporary �le� Since as does not use a temporary
disk �le� this option makes no di	erence� ��t� needs exactly one �lename�

The Vax version of the assembler accepts two options when compiled for VMS� They
are ��h�� and ����� The ��h� option prevents as from modifying the symbol�table entries
for symbols that contain lowercase characters �I think�� The ���� option causes as to print
warning messages if the FILENAME part of the object �le� or any symbol name is larger
than �� characters� The ���� option also inserts some code following the ��main� symbol so
that the object �le is compatible with Vax��� �C��

�
 Using as

������ VAX Floating Point

Conversion of �onums to �oating point is correct� and compatible with previous as�
semblers� Rounding is towards zero if the remainder is exactly half the least signi�cant
bit�

D� F� G and H �oating point formats are understood�

Immediate �oating literals �e�g� �S*������ are rendered correctly� Again� rounding is
towards zero in the boundary case�

The �float directive produces f format numbers� The �double directive produces d

format numbers�

������ Vax Machine Directives

The Vax version of the assembler supports four directives for generating Vax �oating
point constants� They are described in the table below�

�dfloat This expects zero or more �onums� separated by commas� and assembles Vax
d format
��bit �oating point constants�

�ffloat This expects zero or more �onums� separated by commas� and assembles Vax
f format �
�bit �oating point constants�

�gfloat This expects zero or more �onums� separated by commas� and assembles Vax
g format
��bit �oating point constants�

�hfloat This expects zero or more �onums� separated by commas� and assembles Vax
h format �
��bit �oating point constants�

�����	 VAX Opcodes

All DEC mnemonics are supported� Beware that case� � � instructions have exactly �
operands� The dispatch table that follows the case� � � instruction should be made with
�word statements� This is compatible with all unix assemblers we know of�

������ VAX Branch Improvement

Certain pseudo opcodes are permitted� They are for branch instructions� They expand
to the shortest branch instruction that reaches the target� Generally these mnemonics are
made by substituting �j� for �b� at the start of a DEC mnemonic� This feature is included
both for compatibility and to help compilers� If you do not need this feature� avoid these
opcodes� Here are the mnemonics� and the code they can expand into�

jbsb �Jsb� is already an instruction mnemonic� so we chose �jbsb��

�byte displacement�
bsbb � � �

�word displacement�
bsbw � � �

Chapter �� Machine Dependent Features ��

�long displacement�
jsb � � �

jbr

jr Unconditional branch�

�byte displacement�
brb � � �

�word displacement�
brw � � �

�long displacement�
jmp � � �

jCOND COND may be any one of the conditional branches neq� nequ� eql� eqlu� gtr�
geq� lss� gtru� lequ� vc� vs� gequ� cc� lssu� cs� COND may also be one of
the bit tests bs� bc� bss� bcs� bsc� bcc� bssi� bcci� lbs� lbc� NOTCOND is
the opposite condition to COND�

�byte displacement�
bCOND � � �

�word displacement�
bNOTCOND foo � brw � � � � foo�

�long displacement�
bNOTCOND foo � jmp � � � � foo�

jacbX X may be one of b d f g h l w�

�word displacement�
OPCODE � � �

�long displacement�
OPCODE � � �� foo �
brb bar �
foo� jmp � � � �
bar�

jaobYYY YYY may be one of lss leq�

jsobZZZ ZZZ may be one of geq gtr�

�byte displacement�
OPCODE � � �

�word displacement�
OPCODE � � �� foo �
brb bar �
foo� brw destination �
bar�

�long displacement�

�� Using as

OPCODE � � �� foo �
brb bar �
foo� jmp destination �
bar�

aobleq

aoblss

sobgeq

sobgtr

�byte displacement�
OPCODE � � �

�word displacement�
OPCODE � � �� foo �
brb bar �
foo� brw destination �
bar�

�long displacement�
OPCODE � � �� foo �
brb bar �
foo� jmp destination �
bar�

������ VAX Operands

The immediate character is ��� for Unix compatibility� not ��� as DEC writes it�

The indirect character is ��� for Unix compatibility� not �)� as DEC writes it�

The displacement sizing character is �*� �an accent grave� for Unix compatibility� not �(�
as DEC writes it� The letter preceding �*� may have either case� �G� is not understood� but
all other letters �b i l s w� are understood�

Register names understood are r	 r� r� � � � r�� ap fp sp pc� Upper and lower case
letters are equivalent�

For instance

tstb �w*�
�r��

Any expression is permitted in an operand� Operands are comma separated�

������ Not Supported on VAX

Vax bit �elds can not be assembled with as� Someone can add the required code if they
really need it�

���	 v��� Dependent Features

Chapter �� Machine Dependent Features ��

������ Options

as supports the following additional command�line options for the V��� processor family�

�wsigned�overflow

Causes warnings to be produced when signed immediate values over�ow the
space available for then within their opcodes� By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants�

�wunsigned�overflow

Causes warnings to be produced when unsigned immediate values over�ow the
space available for then within their opcodes� By default this option is disabled
as it is possible to receive spurious warnings due to using exact bit patterns as
immediate constants�

�mv��	 Speci�es that the assembled code should be marked as being targeted at the
V��� processor� This allows the linker to detect attempts to link such code
with code assembled for other processors�

������ Syntax

�������� Special Characters

��� is the line comment character�

�������� Register Names

as supports the following names for registers�

general register 	

r�� zero

general register �

r�

general register �

r
� hp

general register

r�� sp

general register

r�� gp

general register �

r�� tp

general register �

r

general register �

r�

��� Using as

general register �

r�

general register �

r�

general register �	

r��

general register ��

r��

general register ��

r�

general register �

r��

general register �

r��

general register ��

r��

general register ��

r�

general register ��

r��

general register ��

r��

general register ��

r��

general register �	

r
�

general register ��

r
�

general register ��

r

general register �

r
�

general register �

r
�

general register ��

r
�

general register ��

r

Chapter �� Machine Dependent Features ���

general register ��

r
�

general register ��

r
�

general register ��

r
�

general register
	

r��� ep

general register
�

r��� lp

system register 	

eipc

system register �

eipsw

system register �

fepc

system register

fepsw

system register

ecr

system register �

psw

������ Floating Point

The V��� family uses ieee �oating�point numbers�

�����	 V��
 Machine Directives

�offset %expression&
Moves the o	set into the current section to the speci�ed amount�

�section �name�� %type&

This is an extension to the standard �section directive� It sets the current section
to be %type& and creates an alias for this section called �name��

�v��	 Speci�es that the assembled code should be marked as being targeted at the
V��� processor� This allows the linker to detect attempts to link such code
with code assembled for other processors�

��
 Using as

������ Opcodes

as implements all the standard V��� opcodes�

as also implements the following pseudo ops�

hi	�� Computes the higher �
 bits of the given expression and stores it into the
immediate operand �eld of the given instruction� For example�

�mulhi hi	�here � there�� r�� r��

computes the di	erence between the address of labels �here� and �there�� takes
the upper �
 bits of this di	erence� shifts it down �
 bits and then mutliplies
it by the lower �
 bits in register �� putting the result into register
�

lo�� Computes the lower �
 bits of the given expression and stores it into the im�
mediate operand �eld of the given instruction� For example�

�addi lo�here � there�� r�� r��

computes the di	erence between the address of labels �here� and �there�� takes
the lower �
 bits of this di	erence and adds it to register �� putting the result
into register
�

hi�� Computes the higher �
 bits of the given expression and then adds the value
of the most signi�cant bit of the lower �
 bits of the expression and stores the
result into the immediate operand �eld of the given instruction� For example
the following code can be used to compute the address of the label �here� and
store it into register
�

�movhi hi�here�� r	� r�� �movea lo�here�� r�� r��

The reason for this special behaviour is that movea performs a sign exten�
tion on its immediate operand� So for example if the address of �here� was
�xFFFFFFFF then without the special behaviour of the hi�� pseudo�op the
movhi instruction would put �xFFFF���� into r
� then the movea instruc�
tion would takes its immediate operand� �xFFFF� sign extend it to �
 bits�
�xFFFFFFFF� and then add it into r
 giving �xFFFEFFFF which is wrong
�the �fth nibble is E�� With the hi�� pseudo op adding in the top bit of the
lo�� pseudo op� the movhi instruction actually stores � into r
 ��xFFFF � � $
�x������ so that the movea instruction stores �xFFFFFFFF into r
 � the right
value�

sdaoff�� Computes the o	set of the named variable from the start of the Small Data
Area �whoes address is held in register �� the GP register� and stores the result
as a �
 bit signed value in the immediate operand �eld of the given instruction�
For example�

�ld�w sdaoff��a�variable��gp��r��

loads the contents of the location pointed to by the label � a variable� into
register
� provided that the label is located somewhere within ��� �
K of the
address held in the GP register� �Note the linker assumes that the GP register
contains a �xed address set to the address of the label called � gp�� This can
either be set up automatically by the linker� or speci�cally set by using the
���defsym ��gp�%value&� command line option��

Chapter �� Machine Dependent Features ���

tdaoff�� Computes the o	set of the named variable from the start of the Tiny Data Area
�whoes address is held in register ��� the EP register� and stores the result as a
� or � bit unsigned value in the immediate operand �eld of the given instruction�
For example�

�sld�w tdaoff��a�variable��ep��r��

loads the contents of the location pointed to by the label � a variable� into
register
� provided that the label is located somewhere within �
�
 bytes of
the address held in the EP register� �Note the linker assumes that the EP
register contains a �xed address set to the address of the label called � ep��
This can either be set up automatically by the linker� or speci�cally set by
using the ���defsym ��ep�%value&� command line option��

zdaoff�� Computes the o	set of the named variable from address � and stores the result
as a �
 bit signed value in the immediate operand �eld of the given instruction�
For example�

�movea zdaoff��a�variable��zero�r��

puts the address of the label � a variable� into register
� assuming that the
label is somewhere within the �rst �
K of memory� �Strictly speaking it also
possible to access the last �
K of memory as well� as the o	sets are signed��

For information on the V��� instruction set� see V
�	 Family �������Bit single�Chip
Microcontroller Architecture Manual from NEC� Ltd�

��� Using as

Chapter �� Reporting Bugs ���

 Reporting Bugs

Your bug reports play an essential role in making as reliable�

Reporting a bug may help you by bringing a solution to your problem� or it may not�
But in any case the principal function of a bug report is to help the entire community
by making the next version of as work better� Bug reports are your contribution to the
maintenance of as�

In order for a bug report to serve its purpose� you must include the information that
enables us to �x the bug�

��� Have you found a bug�

If you are not sure whether you have found a bug� here are some guidelines�

� If the assembler gets a fatal signal� for any input whatever� that is a as bug� Reliable
assemblers never crash�

� If as produces an error message for valid input� that is a bug�

� If as does not produce an error message for invalid input� that is a bug� However� you
should note that your idea of �invalid input� might be our idea of �an extension� or
�support for traditional practice��

� If you are an experienced user of assemblers� your suggestions for improvement of as
are welcome in any case�

��� How to report bugs

A number of companies and individuals o	er support for gnu products� If you obtained
as from a support organization� we recommend you contact that organization �rst�

You can �nd contact information for many support companies and individuals in the �le
�etc�SERVICE� in the gnu Emacs distribution�

In any event� we also recommend that you send bug reports for as to �bug�gnu�utils)gnu�org��

The fundamental principle of reporting bugs usefully is this� report all the facts� If you
are not sure whether to state a fact or leave it out� state it�

Often people omit facts because they think they know what causes the problem and
assume that some details do not matter� Thus� you might assume that the name of a
symbol you use in an example does not matter� Well� probably it does not� but one cannot
be sure� Perhaps the bug is a stray memory reference which happens to fetch from the
location where that name is stored in memory� perhaps� if the name were di	erent� the
contents of that location would fool the assembler into doing the right thing despite the
bug� Play it safe and give a speci�c� complete example� That is the easiest thing for you
to do� and the most helpful�

Keep in mind that the purpose of a bug report is to enable us to �x the bug if it is new
to us� Therefore� always write your bug reports on the assumption that the bug has not
been reported previously�

��
 Using as

Sometimes people give a few sketchy facts and ask� �Does this ring a bell�� Those bug
reports are useless� and we urge everyone to refuse to respond to them except to chide the
sender to report bugs properly�

To enable us to �x the bug� you should include all these things�

� The version of as� as announces it if you start it with the ���version� argument�

Without this� we will not know whether there is any point in looking for the bug in the
current version of as�

� Any patches you may have applied to the as source�

� The type of machine you are using� and the operating system name and version number�

� What compiler �and its version� was used to compile as�e�g� �gcc������

� The command arguments you gave the assembler to assemble your example and observe
the bug� To guarantee you will not omit something important� list them all� A copy
of the Make�le �or the output from make� is su�cient�

If we were to try to guess the arguments� we would probably guess wrong and then we
might not encounter the bug�

� A complete input �le that will reproduce the bug� If the bug is observed when the
assembler is invoked via a compiler� send the assembler source� not the high level
language source� Most compilers will produce the assembler source when run with the
��S� option� If you are using gcc� use the options ��v ��save�temps�� this will save the
assembler source in a �le with an extension of ��s�� and also show you exactly how as

is being run�

� A description of what behavior you observe that you believe is incorrect� For example�
�It gets a fatal signal��

Of course� if the bug is that as gets a fatal signal� then we will certainly notice it� But
if the bug is incorrect output� we might not notice unless it is glaringly wrong� You
might as well not give us a chance to make a mistake�

Even if the problem you experience is a fatal signal� you should still say so explicitly�
Suppose something strange is going on� such as� your copy of as is out of synch� or you
have encountered a bug in the C library on your system� �This has happened�� Your
copy might crash and ours would not� If you told us to expect a crash� then when ours
fails to crash� we would know that the bug was not happening for us� If you had not
told us to expect a crash� then we would not be able to draw any conclusion from our
observations�

� If you wish to suggest changes to the as source� send us context di	s� as generated by
diff with the ��u�� ��c�� or ��p� option� Always send di	s from the old �le to the new
�le� If you even discuss something in the as source� refer to it by context� not by line
number�

The line numbers in our development sources will not match those in your sources�
Your line numbers would convey no useful information to us�

Here are some things that are not necessary�

� A description of the envelope of the bug�

Often people who encounter a bug spend a lot of time investigating which changes to
the input �le will make the bug go away and which changes will not a	ect it�

Chapter �� Reporting Bugs ���

This is often time consuming and not very useful� because the way we will �nd the
bug is by running a single example under the debugger with breakpoints� not by pure
deduction from a series of examples� We recommend that you save your time for
something else�

Of course� if you can �nd a simpler example to report instead of the original one� that
is a convenience for us� Errors in the output will be easier to spot� running under the
debugger will take less time� and so on�

However� simpli�cation is not vital� if you do not want to do this� report the bug
anyway and send us the entire test case you used�

� A patch for the bug�

A patch for the bug does help us if it is a good one� But do not omit the necessary
information� such as the test case� on the assumption that a patch is all we need� We
might see problems with your patch and decide to �x the problem another way� or we
might not understand it at all�

Sometimes with a program as complicated as as it is very hard to construct an example
that will make the program follow a certain path through the code� If you do not send
us the example� we will not be able to construct one� so we will not be able to verify
that the bug is �xed�

And if we cannot understand what bug you are trying to �x� or why your patch should
be an improvement� we will not install it� A test case will help us to understand�

� A guess about what the bug is or what it depends on�

Such guesses are usually wrong� Even we cannot guess right about such things without
�rst using the debugger to �nd the facts�

��� Using as

Chapter ��� Acknowledgements ���

�� Acknowledgements

If you have contributed to as and your name isn�t listed here� it is not meant as a slight�
We just don�t know about it� Send mail to the maintainer� and we�ll correct the situation�
Currently the maintainer is Ken Raeburn �email address raeburn)cygnus�com��

Dean Elsner wrote the original gnu assembler for the VAX��

Jay Fenlason maintained GAS for a while� adding support for GDB�speci�c debug infor�
mation and the
�k series machines� most of the preprocessing pass� and extensive changes
in �messages�c�� �input�file�c�� �write�c��

K� Richard Pixley maintained GAS for a while� adding various enhancements and many
bug �xes� including merging support for several processors� breaking GAS up to handle
multiple object �le format back ends �including heavy rewrite� testing� an integration of
the co	 and b�out back ends�� adding con�guration including heavy testing and veri�ca�
tion of cross assemblers and �le splits and renaming� converted GAS to strictly ANSI C
including full prototypes� added support for m
������� and cpu�
� did considerable work
on i�
� including a COFF port �including considerable amounts of reverse engineering��
a SPARC opcode �le rewrite� DECstation� rs
���� and hp���hpux host ports� updated
�know� assertions and made them work� much other reorganization� cleanup� and lint�

Ken Raeburn wrote the high�level BFD interface code to replace most of the code in
format�speci�c I�O modules�

The original VMS support was contributed by David L� Kashtan� Eric Youngdale has
done much work with it since�

The Intel ����
 machine description was written by Eliot Dresselhaus�

Minh Tran�Le at IntelliCorp contributed some AIX ��
 support�

The Motorola ��k machine description was contributed by Devon Bowen of Bu	alo
University and Torbjorn Granlund of the Swedish Institute of Computer Science�

Keith Knowles at the Open Software Foundation wrote the original MIPS back end
��tc�mips�c�� �tc�mips�h��� and contributed Rose format support �which hasn�t been
merged in yet�� Ralph Campbell worked with the MIPS code to support a�out format�

Support for the Zilog Z�k and Hitachi H����� and H����� processors �tc�z�k� tc�h�����
tc�h������ and IEEE
�� object �le format �obj�ieee�� was written by Steve Chamberlain
of Cygnus Support� Steve also modi�ed the COFF back end to use BFD for some low�level
operations� for use with the H����� and AMD
�k targets�

John Gilmore built the AMD
���� support� added �include support� and simpli�ed
the con�guration of which versions accept which directives� He updated the
�k machine
description so that Motorola�s opcodes always produced �xed�size instructions �e�g� jsr��
while synthetic instructions remained shrinkable �jbsr�� John �xed many bugs� including
true tested cross�compilation support� and one bug in relaxation that took a week and
required the proverbial one�bit �x�

Ian Lance Taylor of Cygnus Support merged the Motorola and MIT syntax for the
�k�
completed support for some COFF targets �
�k� i��
 SVR�� and SCO Unix�� added support

� Any more details�

��� Using as

for MIPS ECOFF and ELF targets� wrote the initial RS�
��� and PowerPC assembler� and
made a few other minor patches�

Steve Chamberlain made as able to generate listings�

Hewlett�Packard contributed support for the HP���������

Je	 Law wrote GAS and BFD support for the native HPPA object format �SOM� along
with a fairly extensive HPPA testsuite �for both SOM and ELF object formats�� This
work was supported by both the Center for Software Science at the University of Utah and
Cygnus Support�

Support for ELF format �les has been worked on by Mark Eichin of Cygnus Support
�original� incomplete implementation for SPARC�� Pete Hoogenboom and Je	 Law at the
University of Utah �HPPA mainly�� Michael Meissner of the Open Software Foundation
�i��
 mainly�� and Ken Raeburn of Cygnus Support �sparc� and some initial
��bit support��

Richard Henderson rewrote the Alpha assembler� Klaus Kaempf wrote GAS and BFD
support for openVMS�Alpha�

Several engineers at Cygnus Support have also provided many small bug �xes and con�
�guration enhancements�

Many others have contributed large or small bug�xes and enhancements� If you have
contributed signi�cant work and are not mentioned on this list� and want to be� let us know�
Some of the history has been lost� we are not intentionally leaving anyone out�

Index ���

Index

�
� ��

�APP ��

�NO�APP ��

�
� in symbol names ��� ��� ��

�
�� �

���base�size�default���	�
�

���base�size�default���	�
�

���bitwise�or	 option� M���x� � � � � � � � � � � � � � � � �
�

���disp�size�default���	�
�

���disp�size�default���	�
�

��enforce�aligned�data ��

��MD ��

���register�prefix�optional	 option� M���x�

�
�

��statistics �

��traditional�format �

�	 option� VAX�VMS ��

�a �

�A options� i���
�

�ac �

�ad �

�ah �

�al �

�an �

�as �

�Asparclet ��

�Asparclite ��

�Av� ��

�Av
 ��

�Av� ��

�Av�a ��

�b option� i���
�

�D �

�D� ignored on VAX ��

�d� VAX option ��

�EB command line option� ARM � � � � � � � � � � � � � � � ��

�EB option �MIPS� ��

�EL command line option� ARM � � � � � � � � � � � � � � � ��

�EL option �MIPS� ��

�f �

�G option �MIPS� ��

�h option� VAX�VMS ��

�I path ��

�J� ignored on VAX ��

�K ��

�L ��

��l	 option� M���x�
�

�M ��

��m�
���	 and related options � � � � � � � � � � � � � � � � � �
�

�mall command line option� ARM � � � � � � � � � � � � � ��

�mapcs command line option� ARM � � � � � � � � � � � � ��

�marm command line option� ARM � � � � � � � � � � � � � ��

�marmv command line option� ARM � � � � � � � � � � � � ��

�mbig�endian option �ARC� ��

�mfpa command line option� ARM � � � � � � � � � � � � � ��

�mfpe�old command line option� ARM � � � � � � � � ��

�mlittle�endian option �ARC� � � � � � � � � � � � � � � � ��

�mno�fpu command line option� ARM � � � � � � � � � � ��

�mthumb command line option� ARM � � � � � � � � � � � ��

�mthumb�interwork command line option� ARM

� ��

�mv

� command line option� V��� � � � � � � � � � � � � ��

�no�relax option� i���
�

�nocpp ignored �MIPS� ��

�o ��

�R ��

�S� ignored on VAX ��

�t� ignored on VAX ��

�T� ignored on VAX ��

�v �

�V� redundant on VAX ��

�version �

�W �

�wsigned�overflow command line option� V���

� ��

�wunsigned�overflow command line option� V���

� ��

�
� �symbol� ��

�insn ��

�o �

�param on HPPA �

�set autoextend ��

�set mipsn ��

�set noautoextend� ��

�set pop ��

�set push ��

�v

� directive� V��� ���

��
 Using as

� �label� �

�
�word modi�er� D��V ��

�� �doublequote character� ��

�� ���	 character� ��

�b �backspace character� ��

�ddd �octal character code� ��

�f �formfeed character� ��

�n �newline character� ��

�r �carriage return character� � � � � � � � � � � � � � � � � � � ��

�t �tab� ��

�xd��� �hex character code� ��

�
���bit code� i
��

�
��K support �

A
a�out �

a�out symbol attributes ��

abort directive �

ABORT directive �

absolute section ��

addition� permitted arguments � � � � � � � � � � � � � � � � �
�

addresses �
�

addresses� format of ��

addressing modes� D��V ��

addressing modes� H��
�� ��

addressing modes� H����� ��

addressing modes� M���x� ��

addressing modes� SH� ��

addressing modes� Z���� �

advancing location counter �

align directive �

align directive� SPARC ��

altered di�erence tables ��

alternate syntax for the ���x� � � � � � � � � � � � � � � � � � ��

AMD ��K �oating point �ieee� � � � � � � � � � � � � � � � � �

AMD ��K identi�ers �

AMD ��K line comment character � � � � � � � � � � � � � �

AMD ��K machine directives � � � � � � � � � � � � � � � � � � ��

AMD ��K macros �

AMD ��K opcodes ��

AMD ��K options �none� �

AMD ��K protected registers � � � � � � � � � � � � � � � � � � �

AMD ��K register names �

AMD ��K special purpose registers � � � � � � � � � � � � �

AMD ��K support �

app�file directive �
�

ARC architectures ��

ARC big�endian output ��

ARC endianness �

ARC �oating point �ieee� ��

ARC little�endian output ��

ARC machine directives ��

ARC options ��

ARC support ��

architecture options� i���
�

architecture options� M���x� � � � � � � � � � � � � � � � � � �
�

architectures� ARC ��

architectures� SPARC ��

arguments for addition�
�

arguments for subtraction�
�

arguments in expressions �
�

arithmetic functions �
�

arithmetic operands �
�

arm directive� ARM ��

ARM �oating point �ieee� ��

ARM identi�ers ��

ARM line comment character � � � � � � � � � � � � � � � � � � ��

ARM machine directives ��

ARM opcodes ��

ARM options �none� ��

ARM register names ��

ARM support ��

ascii directive �
�

asciz directive �
�

assembler bugs� reporting ���

assembler crash ���

assembler internal logic error � � � � � � � � � � � � � � � � � � �

assembler version �

assembler� and linker ��

assembly listings� enabling �

assigning values to symbols � � � � � � � � � � � � � � � � �
�
�

attributes� symbol ��

auxiliary attributes� COFF symbols � � � � � � � � � � � � ��

auxiliary symbol information� COFF � � � � � � � � � � �
�

Av� ��

B
backslash ���� ��

backspace ��b� ��

balign directive �
�

Index ���

balignl directive �
�

balignw directive �
�

big endian output� ARC �

big endian output� MIPS� �

big�endian output� ARC ��

big�endian output� MIPS ��

bignums ��

binary integers ��

bit�elds� not supported on VAX � � � � � � � � � � � � � � � ��

block ��

block directive� AMD ��K ��

branch improvement� M���x� � � � � � � � � � � � � � � � � � � �

branch improvement� VAX ��

branch recording� i���
�

branch statistics table� i���
�

bss directive� i���
�

bss section ��� ��

bug criteria ���

bug reports ���

bugs in assembler ���

bus lock pre�xes� i
��
�

bval ��

byte directive �
�

C
call instructions� i
��
�

callj� i��� pseudo�opcode �

carriage return ��r� ��

character constants �

character escape codes ��

character� single ��

characters used in symbols ��

code directive� ARM ��

code�� directive� i
��

code�� directive� i
��

COFF auxiliary symbol information � � � � � � � � � � �
�

COFF structure debugging ��

COFF symbol attributes ��

COFF symbol descriptor�
�

COFF symbol storage class ��

COFF symbol type ��

COFF symbols� debugging �
�

COFF value attribute ��

COMDAT ��

comm directive �
�

command line conventions �

command line options� V��� ��

command�line options ignored� VAX � � � � � � � � � � � ��

comments ��

comments� M���x� ��

comments� removed by preprocessor � � � � � � � � � � � � ��

common directive� SPARC ��

common sections ��

common variable storage ��

compare and jump expansions� i��� � � � � � � � � � � � �

compare�branch instructions� i��� � � � � � � � � � � � � �

conditional assembly �
�

constant� single character ��

constants �

constants� bignum ��

constants� character �

constants� converted by preprocessor � � � � � � � � � � � ��

constants� �oating point ��

constants� integer ��

constants� number ��

constants� string �

continuing statements ��

conversion instructions� i
��
�

coprocessor wait� i
���
�

cpu directive� SPARC ��

cputype directive� AMD ��K � � � � � � � � � � � � � � � � � � ��

crash of assembler ���

current address ��

current address� advancing �

D
D��V �word modi�er ��

D��V addressing modes ��

D��V �oating point ��

D��V line comment character � � � � � � � � � � � � � � � � � � ��

D��V opcode summary ��

D��V optimization �

D��V options� �

D��V registers ��

D��V size modi�ers �

D��V sub�instruction ordering � � � � � � � � � � � � � � � � � ��

D��V sub�instructions �

D��V support �

D��V syntax �

data alignment on SPARC ��

data and text sections� joining � � � � � � � � � � � � � � � � � ��

data directive �
�

data section ��

data� directive� M���x� �

data� directive� M���x� �

debuggers� and symbol order �

debugging COFF symbols �
�

decimal integers ��

def directive �
�

dependency tracking ��

��� Using as

deprecated directives ��

desc directive �
�

descriptor� of a�out symbol ��

dfloat directive� VAX ��

di�erence tables altered ��

di�erence tables� warning ��

dim directive �
�

directives and instructions �

directives� M���x� �

directives� machine independent � � � � � � � � � � � � � � � �

directives� Z����� ��

displacement sizing character� VAX � � � � � � � � � � � � ��

dot �symbol� ��

double directive �
�

double directive� i
��

double directive� M���x� �

double directive� VAX ��

doublequote ���� ��

E
ECOFF sections �

ecr register� V��� ���

eight�byte integer ��

eipc register� V��� ���

eipsw register� V��� ���

eject directive �
�

else directive �
�

empty expressions �
�

emulation �

endef directive �
�

endianness� ARC �

endianness� MIPS �

endif directive �
�

endm directive ��

EOF� newline must precede ��

ep register� V��� ���

equ directive �
�

equiv directive �

err directive �

error messsages �

error on valid input ���

errors� continuing after �

escape codes� character ��

even ��

even directive� M���x� �

exitm directive ��

expr �internal section� �

expression arguments �
�

expressions �
�

expressions� empty �
�

expressions� integer �
�

extend directive M���x�� �

extended directive� i���
�

extern directive �

F
faster processing ��f� �

fatal signal ���

fepc register� V��� ���

fepsw register� V��� ���

ffloat directive� VAX ��

file directive �

file directive� AMD ��K ��

�le name� logical �
��

�les� including �
�

�les� input �

fill directive �

�lling memory �

float directive �
�

float directive� i
��

float directive� M���x� �

float directive� VAX ��

�oating point numbers ��

�oating point numbers �double� � � � � � � � � � � � � � � � �
�

�oating point numbers �single� � � � � � � � � � � � � �
�� ��

�oating point� AMD ��K �ieee� � � � � � � � � � � � � � � � �

�oating point� ARC �ieee� ��

�oating point� ARM �ieee� ��

�oating point� D��V ��

�oating point� H��
�� �ieee� � � � � � � � � � � � � � � � � � � ��

�oating point� H����� �ieee� � � � � � � � � � � � � � � � � � � ��

�oating point� HPPA �ieee� ��

�oating point� i
��

�oating point� i��� �ieee�
�

�oating point� M���x� �

�oating point� SH �ieee� ��

�oating point� SPARC �ieee� � � � � � � � � � � � � � � � � � � ��

�oating point� V��� �ieee� ���

�oating point� VAX ��

�onums ��

force�thumb directive� ARM � � � � � � � � � � � � � � � � � � ��

format of error messages �

format of warning messages �

formfeed ��f� ��

functions� in expressions �
�

G
gbr���� i��� postprocessor �
�

gfloat directive� VAX ��

global ��

Index ���

global directive �
�

gp register� MIPS �

gp register� V��� ��

grouping data �

H
H��
�� addressing modes ��

H��
�� �oating point �ieee� ��

H��
�� line comment character � � � � � � � � � � � � � � � � ��

H��
�� line separator ��

H��
�� machine directives �none� � � � � � � � � � � � � � � �

H��
�� opcode summary �

H��
�� options �none� ��

H��
�� registers ��

H��
�� size su�xes �

H��
�� support ��

H��
��H� assembling for �

H����� addressing modes ��

H����� �oating point �ieee� ��

H����� line comment character � � � � � � � � � � � � � � � � ��

H����� line separator ��

H����� machine directives �none� � � � � � � � � � � � � � � ��

H����� opcode summary ��

H����� options �none� ��

H����� registers ��

H����� support ��

half directive� SPARC ��

hex character code ��xd���� ��

hexadecimal integers ��

hfloat directive� VAX ��

hi pseudo�op� V��� ���

hi� pseudo�op� V��� ���

HPPA directives not supported � � � � � � � � � � � � � � � � �

HPPA �oating point �ieee� ��

HPPA Syntax ��

HPPA�only directives �

hword directive �
�

I
i
�� ���bit code �

i
�� conversion instructions �
�

i
�� �oating point �

i
�� immediate operands �
�

i
�� jump optimization �

i
�� jump� call� return �
�

i
�� jump�call operands �
�

i
�� memory references �
�

i
�� mul� imul instructions �
�

i
�� opcode naming �
�

i
�� opcode pre�xes �
�

i
�� options �none�
�

i
�� register operands �
�

i
�� registers �
�

i
�� sections �
�

i
�� size su�xes �
�

i
�� source� destination operands � � � � � � � � � � � � � �
�

i
�� support �
�

i
�� syntax compatibility �
�

i��
�� support �
�

i��� architecture options �
�

i��� branch recording �
�

i��� callj pseudo�opcode �

i��� compare and jump expansions� � � � � � � � � � � � �

i��� compare�branch instructions � � � � � � � � � � � � � �

i��� �oating point �ieee�
�

i��� machine directives �
�

i��� opcodes �

i��� options �
�

i��� support �
�

ident directive �
�

identi�ers� AMD ��K �

identi�ers� ARM ��

if directive �
�

ifdef directive �
�

ifndef directive �
�

ifnotdef directive �
�

immediate character� M���x� � � � � � � � � � � � � � � � � � � ��

immediate character� VAX ��

immediate operands� i
��
�

imul instruction� i
��
�

include directive �
�

include directive search path � � � � � � � � � � � � � � � � � � ��

indirect character� VAX ��

in�x operators �
�

inhibiting interrupts� i
��
�

input �

input �le linenumbers �

instruction set� M���x� �

instruction summary� D��V ��

instruction summary� H��
�� � � � � � � � � � � � � � � � � � � �

instruction summary� H����� � � � � � � � � � � � � � � � � � � ��

instruction summary� SH ��

instruction summary� Z����� ��

instructions and directives �

int directive �
�

int directive� H��
�� �

int directive� H����� ��

int directive� i
��

integer expressions �
�

integer� ���byte �

��
 Using as

integer� ��byte ��

integers ��

integers� ���bit �
�

integers�
��bit �
�

integers� binary ��

integers� decimal ��

integers� hexadecimal ��

integers� octal ��

integers� one byte �
�

internal assembler sections �

invalid input ���

invocation summary �

irp directive �
�

irpc directive �
�

J
joining text and data sections � � � � � � � � � � � � � � � � � � ��

jump instructions� i
��
�

jump optimization� i
��

jump�call operands� i
���
�

L
label ��� �

labels �

lcomm directive ��

ld �

ldouble directive M���x� �

leafproc directive� i���
�

length of symbols ��

lflags directive �ignored� ��

line comment character ��

line comment character� AMD ��K � � � � � � � � � � � � �

line comment character� ARM � � � � � � � � � � � � � � � � � ��

line comment character� D��V � � � � � � � � � � � � � � � � � ��

line comment character� H��
�� � � � � � � � � � � � � � � � ��

line comment character� H����� � � � � � � � � � � � � � � � ��

line comment character� M���x� � � � � � � � � � � � � � � � ��

line comment character� SH ��

line comment character� V��� � � � � � � � � � � � � � � � � � � ��

line comment character� Z���� � � � � � � � � � � � � � � � � � �

line directive ��

line directive� AMD ��K ��

line numbers� in input �les �

line numbers� in warnings�errors � � � � � � � � � � � � � � � �

line separator character ��

line separator� H��
�� ��

line separator� H����� ��

line separator� SH ��

line separator� Z���� �

lines starting with ��

linker �

linker� and assembler ��

linkonce directive ��

list directive ��

listing control� turning o� ��

listing control� turning on ��

listing control� new page �
�

listing control� paper size ��

listing control� subtitle ��

listing control� title line ��

listings� enabling �

little endian output� ARC �

little endian output� MIPS �

little�endian output� ARC� ��

little�endian output� MIPS ��

ln directive ��

lo pseudo�op� V��� ���

local common symbols ��

local labels� retaining in output � � � � � � � � � � � � � � � � ��

local symbol names �

location counter ��

location counter� advancing �

logical �le name �
��

logical line number ��

logical line numbers ��

long directive ��

long directive� i
��

lp register� V��� ���

lval ��

M
M���x� addressing modes ��

M���x� architecture options � � � � � � � � � � � � � � � � � � �
�

M���x� branch improvement � � � � � � � � � � � � � � � � � � �

M���x� directives �

M���x� �oating point �

M���x� immediate character � � � � � � � � � � � � � � � � � � ��

M���x� line comment character � � � � � � � � � � � � � � � � ��

M���x� opcodes �

M���x� options �
�

M���x� pseudo�opcodes �

M���x� size modi�ers ��

M���x� support �
�

M���x� syntax ��

machine dependencies ��

machine directives� AMD ��K � � � � � � � � � � � � � � � � � ��

machine directives� ARC ��

machine directives� ARM ��

machine directives� H��
�� �none� � � � � � � � � � � � � � �

machine directives� H����� �none� � � � � � � � � � � � � � ��

Index ���

machine directives� i���
�

machine directives� SH ��

machine directives� SPARC ��

machine directives� V��� ���

machine directives� VAX ��

machine independent directives � � � � � � � � � � � � � � � �

machine instructions �not covered� � � � � � � � � � � � � � � �

machine�independent syntax ��

macro directive ��

macros ��

Macros� AMD ��K �

macros� count executed ��

make rules� ��

manual� structure and purpose � � � � � � � � � � � � � � � � � � �

memory references� i
��
�

merging text and data sections � � � � � � � � � � � � � � � � � ��

messages from assembler �

minus� permitted arguments � � � � � � � � � � � � � � � � � � �
�

MIPS architecture options ��

MIPS big�endian output ��

MIPS debugging directives �

MIPS ECOFF sections �

MIPS endianness �

MIPS ISA �

MIPS ISA override ��

MIPS little�endian output ��

MIPS option stack ��

MIPS processor ��

mit ��

mnemonics for opcodes� VAX � � � � � � � � � � � � � � � � � � ��

mnemonics� D��V ��

mnemonics� H��
�� �

mnemonics� H����� ��

mnemonics� SH ��

mnemonics� Z���� ��

Motorola syntax for the ���x� � � � � � � � � � � � � � � � � � ��

MRI compatibility mode ��

mri directive ��

MRI mode� temporarily ��

mul instruction� i
��
�

multi�line statements ��

N
name ��

named section ��

named sections ��

names� symbol �

naming object �le ��

new page� in listings �
�

newline ��n� ��

newline� required at �le end ��

nolist directive ��

null�terminated strings �
�

number constants ��

number of macros executed ��

numbered subsections �

numbers� ���bit �
�

numeric values�
�

O
object �le �

object �le format �

object �le name ��

object �le� after errors �

obsolescent directives ��

octa directive �

octal character code ��ddd� ��

octal integers ��

offset directive� V��� ���

opcode mnemonics� VAX ��

opcode naming� i
��
�

opcode pre�xes� i
��
�

opcode su�xes� i
��
�

opcode summary� D��V ��

opcode summary� H��
�� �

opcode summary� H����� ��

opcode summary� SH ��

opcode summary� Z���� ��

opcodes for AMD ��K ��

opcodes for ARM ��

opcodes for V��� ���

opcodes� i���

opcodes� M���x� �

operand delimiters� i
��
�

operand notation� VAX ��

operands in expressions �
�

operator precedence �
�

operators� in expressions �
�

operators� permitted arguments � � � � � � � � � � � � � � � �
�

optimization� D��V �

option summary �

options for AMD��K �none� �

options for ARC ��

options for ARM �none� ��

options for i
�� �none�
�

options for SPARC ��

options for V��� �none� ��

options for VAX�VMS ��

options� all versions of assembler � � � � � � � � � � � � � � � � �

options� command line �

��� Using as

options� D��V �

options� H��
�� �none� ��

options� H����� �none� ��

options� i���
�

options� M���x�
�

options� SH �none� ��

options� Z���� �

org directive �

other attribute� of a�out symbol � � � � � � � � � � � � � � � ��

output �le �

P
p�align directive �

p�alignl directive �

p�alignw directive �

padding the location counter � � � � � � � � � � � � � � � � � � �

padding the location counter given a power of two

� �

padding the location counter given number of

bytes �
�

page� in listings �
�

paper size� for listings ��

paths for �include ��

patterns� writing in memory � � � � � � � � � � � � � � � � � � �

plus� permitted arguments �
�

precedence of operators �
�

precision� �oating point ��

pre�x operators�
�

pre�xes� i
��
�

preprocessing ��

preprocessing� turning on and o�� � � � � � � � � � � � � � � ��

primary attributes� COFF symbols � � � � � � � � � � � � � ��

proc directive� SPARC ��

protected registers� AMD ��K � � � � � � � � � � � � � � � � � �

pseudo�opcodes� M���x� �

pseudo�ops for branch� VAX ��

pseudo�ops� machine independent � � � � � � � � � � � � � �

psize directive ��

psw register� V��� ���

purpose of gnu assembler �

Q
quad directive ��

quad directive� i
��

R
real�mode code� i
��

register names� AMD ��K �

register names� ARM ��

register names� H��
�� ��

register names� V��� ��

register names� VAX ��

register operands� i
��
�

registers� D��V ��

registers� H����� ��

registers� i
���
�

registers� SH ��

registers� Z���� �

relocation ��

relocation example �

repeat pre�xes� i
��
�

reporting bugs in assembler ���

rept directive ��

reserve directive� SPARC ��

return instructions� i
��
�

rsect ��

S
sbttl directive ��

scl directive ��

sdaoff pseudo�op� V��� ���

search path for �include ��

sect directive� AMD ��K ��

section directive ��

section directive� V��� ���

section override pre�xes� i
�� � � � � � � � � � � � � � � � � � �
�

section�relative addressing ��

sections ��

sections in messages� internal � � � � � � � � � � � � � � � � � � �

sections� i
��
�

sections� named� ��

seg directive� SPARC ��

segm ��

set directive ��

SH addressing modes ��

SH �oating point �ieee� ��

SH line comment character ��

SH line separator ��

SH machine directives ��

SH opcode summary ��

SH options �none� ��

SH registers ��

SH support ��

short directive ��

single character constant ��

single directive ��

single directive� i
��

sixteen bit integers �
�

sixteen byte integer �

size directive ��

Index ���

size modi�ers� D��V �

size modi�ers� M���x� ��

size pre�xes� i
��
�

size su�xes� H��
�� �

sizes operands� i
��
�

skip directive �

skip directive� M���x� �

skip directive� SPARC ��

sleb��
 directive �

small objects� MIPS ECOFF �

SOM symbol attributes ��

source program �

source� destination operands� i
�� � � � � � � � � � � � � � �
�

sp register� V��� ��

space directive �

space used� maximum for assembly � � � � � � � � � � � � � �

SPARC architectures ��

SPARC data alignment ��

SPARC �oating point �ieee� ��

SPARC machine directives ��

SPARC options ��

SPARC support ��

special characters� M���x� ��

special purpose registers� AMD ��K� � � � � � � � � � � � �

stabd directive ��

stabn directive ��

stabs directive ��

stabx directives �

standard assembler sections ��

standard input� as input �le� �

statement on multiple lines ��

statement separator character � � � � � � � � � � � � � � � � � � ��

statement separator� H��
�� ��

statement separator� H����� ��

statement separator� SH ��

statement separator� Z���� �

statements� structure of ��

statistics� about assembly �

stopping the assembly �

string constants �

string directive ��

string directive on HPPA ��

string literals �
�

string� copying to object �le ��

structure debugging� COFF ��

sub�instruction ordering� D��V � � � � � � � � � � � � � � � � ��

sub�instructions� D��V �

subexpressions �
�

subtitles for listings ��

subtraction� permitted arguments � � � � � � � � � � � � � �
�

summary of options �

support ��

supporting �les� including �
�

suppressing warnings �

sval ��

symbol attributes ��

symbol attributes� a�out ��

symbol attributes� COFF ��

symbol attributes� SOM ��

symbol descriptor� COFF �
�

symbol names �

symbol names� ��	 in ��� ��� ��

symbol names� local �

symbol names� temporary �

symbol storage class �COFF� � � � � � � � � � � � � � � � � � � ��

symbol type ��

symbol type� COFF ��

symbol value ��

symbol value� setting ��

symbol values� assigning �

symbol versioning ��

symbol� common �
�

symbol� making visible to linker � � � � � � � � � � � � � � � �
�

symbolic debuggers� information for � � � � � � � � � � � � �

symbols �

symbols with lowercase� VAX�VMS � � � � � � � � � � � � ��

symbols� assigning values to � � � � � � � � � � � � � � � � � � �
�

symbols� local common ��

symver directive ��

syntax compatibility� i
��
�

syntax� D��V �

syntax� M���x� ��

syntax� machine�independent � � � � � � � � � � � � � � � � � � ��

sysproc directive� i���

T
tab ��t� ��

tag directive ��

tdaoff pseudo�op� V��� ���

temporary symbol names �

text and data sections� joining � � � � � � � � � � � � � � � � � ��

text directive ��

text section ��

tfloat directive� i
��

thumb directive� ARM ��

Thumb support ��

thumb�func directive� ARM ��

time� total for assembly �

title directive ��

tp register� V��� ��

�
� Using as

trusted compiler �

turning preprocessing on and o� � � � � � � � � � � � � � � � ��

type directive ��

type of a symbol ��

U
ualong directive� SH ��

uaword directive� SH ��

uleb��
 directive ��

unde�ned section �

unsegm ��

use directive� AMD ��K ��

V
V��� command line options ��

V��� �oating point �ieee� ���

V��� line comment character � � � � � � � � � � � � � � � � � � ��

V��� machine directives ���

V��� opcodes ���

V��� options �none� ��

V��� register names ��

V��� support ��

val directive ��

value attribute� COFF ��

value of a symbol ��

VAX bit�elds not supported ��

VAX branch improvement ��

VAX command�line options ignored � � � � � � � � � � � � ��

VAX displacement sizing character � � � � � � � � � � � � � ��

VAX �oating point ��

VAX immediate character ��

VAX indirect character ��

VAX machine directives ��

VAX opcode mnemonics ��

VAX operand notation ��

VAX register names ��

VAX support ��

Vax��� C compatibility ��

VAX�VMS options ��

version of assembler �

versions of symbols ��

VMS �VAX� options ��

W
warning for altered di�erence tables � � � � � � � � � � � � ��

warning messages �

warnings� suppressing �

whitespace ��

whitespace� removed by preprocessor � � � � � � � � � � � ��

wide �oating point directives� VAX � � � � � � � � � � � � ��

word directive ��

word directive� H��
�� �

word directive� H����� ��

word directive� i
��

word directive� SPARC ��

writing patterns in memory �

wval ��

X
xword directive� SPARC ��

Z
Z��� addressing modes �

Z���� directives ��

Z���� line comment character � � � � � � � � � � � � � � � � � �

Z���� line separator �

Z���� opcode summary ��

Z���� options �

Z���� registers �

Z���� support �

zdaoff pseudo�op� V��� ��

zero register� V��� ��

zero�terminated strings �
�

i

Table of Contents

� Overview �
��� Structure of this Manual �
��
 The GNU Assembler �
��� Object File Formats �

��� Command Line �

��� Input Files �

��
 Output �Object� File �
��� Error and Warning Messages �

� Command�Line Options �

�� Enable Listings� �a�cdhlns� �

�
 �D �

�� Work Faster� �f �

�� �include search path� �I path ��

�� Di	erence Tables� �K ��

�
 Include Local Labels� �L ��

�� Assemble in MRI Compatibility Mode� �M� � � � � � � � � � � � � � � � ��

�� Dependency tracking� ��MD �

�� Name the Object File� �o �

��� Join Data and Text Sections� �R �

��� Display Assembly Statistics� ��statistics � � � � � � � � � � � � � ��

��
 Compatible output� ��traditional�format � � � � � � � � � � � � ��

��� Announce Version� �v ��

��� Suppress Warnings� �W ��

��� Generate Object File in Spite of Errors� �Z � � � � � � � � � � � � � � ��

� Syntax ��
��� Preprocessing ��
��
 Whitespace ��
��� Comments ��
��� Symbols �

��� Statements �

��
 Constants ��

��
�� Character Constants ��
��
���� Strings ��
��
���
 Characters ��

��
�
 Number Constants ��
��
�
�� Integers ��
��
�
�
 Bignums ��
��
�
�� Flonums ��

ii Using as

� Sections and Relocation ��
��� Background �
�
��
 Linker Sections�

��� Assembler Internal Sections �
�
��� Sub�Sections �
�
��� bss Section �
�

� Symbols ��
��� Labels �
�
��
 Giving Symbols Other Values �
�
��� Symbol Names �
�
��� The Special Dot Symbol �
�
��� Symbol Attributes �
�

����� Value �
�
����
 Type �
�
����� Symbol Attributes� a�out �
�

������� Descriptor �
�
������
 Other �
�

����� Symbol Attributes for COFF � � � � � � � � � � � � � � � � � � �
�
������� Primary Attributes �
�
������
 Auxiliary Attributes � � � � � � � � � � � � � � � � � � �
�

����� Symbol Attributes for SOM �
�

	 Expressions ��

�� Empty Expressions ��

�
 Integer Expressions ��

�
�� Arguments ��

�
�
 Operators ��

�
�� Pre�x Operator �

�
�� In�x Operators �

� Assembler Directives ��
��� �abort ��
��
 �ABORT ��
��� �align abs�expr� abs�expr� abs�expr ��
��� �app�file string ��
��� �ascii �string�� ��
��
 �asciz �string�� ��
��� �balign�wl� abs�expr� abs�expr� abs�expr � � � � � � � � � � � � � � ��
��� �byte expressions ��
��� �comm symbol � length ��
���� �data subsection ��
���� �def name ��
���
 �desc symbol� abs�expression ��
���� �dim �

���� �double �onums �

���� �eject �

iii

���
 �else �

���� �endef �

���� �endif �

���� �equ symbol� expression �

��
� �equiv symbol� expression ��
��
� �err ��
��

 �extern ��
��
� �file string ��
��
� �fill repeat � size � value ��
��
� �float �onums ��
��

 �global symbol� �globl symbol ��
��
� �hword expressions ��
��
� �ident ��
��
� �if absolute expression ��
���� �include ��le� ��
���� �int expressions ��
���
 �irp symbol�values� ��
���� �irpc symbol�values� � �� ��
���� �lcomm symbol � length ��
���� �lflags ��
���
 �line line�number ��
���� �linkonce �type�� ��
���� �ln line�number ��
���� �mri val ��
���� �list ��
���� �long expressions ��
���
 �macro ��
���� �nolist �

���� �octa bignums ��
���� �org new�lc � �ll ��
���
 �p�align�wl� abs�expr� abs�expr� abs�expr � � � � � � � � � � � � ��
���� �psize lines � columns ��
���� �quad bignums ��
���� �rept count ��
���� �sbttl �subheading� ��
���� �scl class ��
���
 �section name ��
���� �set symbol� expression �

���� �short expressions �

���� �single �onums �

���
 �size �

���� �sleb��� expressions ��
���� �skip size � �ll ��
���� �space size � �ll ��
��
� �stabd� �stabn� �stabs ��
��
� �string �str� ��
��

 �symver ��
��
� �tag structname ��

iv Using as

��
� �text subsection ��
��
� �title �heading� ��
��

 �type int ��
��
� �val addr ��
��
� �uleb��� expressions ��
��
� �word expressions ��
���� Deprecated Directives ��

� Machine Dependent Features � � � � � � � � � � � � � � ��
��� ARC Dependent Features �

����� Options �

����
 Floating Point �

����� ARC Machine Directives �

��
 AMD
�K Dependent Features ��
��
�� Options ��
��
�
 Syntax ��

��
�
�� Macros ��
��
�
�
 Special Characters ��
��
�
�� Register Names ��

��
�� Floating Point ��
��
�� AMD
�K Machine Directives � � � � � � � � � � � � � � � � � � ��
��
�� Opcodes ��

��� ARM Dependent Features ��
����� Options ��
����
 Syntax ��

����
�� Special Characters ��
����
�
 Register Names �

����� Floating Point �

����� ARM Machine Directives �

����� Opcodes �

��� D��V Dependent Features ��
����� D��V Options ��
����
 Syntax ��

����
�� Size Modi�ers ��
����
�
 Sub�Instructions ��
����
�� Special Characters ��
����
�� Register Names ��
����
�� Addressing Modes ��
����
�
)WORD Modi�er �
�

����� Floating Point �
�
����� Opcodes �
�

��� H����� Dependent Features �
�
����� Options �
�
����
 Syntax �
�

����
�� Special Characters �
�
����
�
 Register Names �
�
����
�� Addressing Modes �
�

����� Floating Point �

v

����� H����� Machine Directives �
�
����� Opcodes �
�

��
 H����� Dependent Features �
�
��
�� Options �
�
��
�
 Syntax �
�

��
�
�� Special Characters �
�
��
�
�
 Register Names �
�
��
�
�� Addressing Modes �
�

��
�� Floating Point �
�
��
�� H����� Machine Directives �
�
��
�� Opcodes �
�

��� HPPA Dependent Features �

����� Notes �

����
 Options �

����� Syntax �

����� Floating Point �

����� HPPA Assembler Directives �
�
����
 Opcodes �
�

��� ����
 Dependent Features ��
����� Options ��
����
 AT"T Syntax versus Intel Syntax � � � � � � � � � � � � � � ��
����� Opcode Naming ��
����� Register Naming ��
����� Opcode Pre�xes ��
����
 Memory References �

����� Handling of Jump Instructions � � � � � � � � � � � � � � � � � � ��
����� Floating Point ��
����� Writing �
�bit Code ��
������ Notes ��

��� Intel ���
� Dependent Features ��
����� i�
� Command�line Options ��
����
 Floating Point �

����� i�
� Machine Directives �

����� i�
� Opcodes ��

������� callj ��
������
 Compare�and�Branch � � � � � � � � � � � � � � � � � � ��

���� M
��x� Dependent Features ��
������ M
��x� Options ��
�����
 Syntax ��
������ Motorola Syntax �

������ Floating Point ��
������
��x� Machine Directives ��
�����
 Opcodes ��

�����
�� Branch Improvement � � � � � � � � � � � � � � � � � ��
�����
�
 Special Characters ��

���� MIPS Dependent Features �

������ Assembler options �

�����
 MIPS ECOFF object code ��

vi Using as

������ Directives for debugging information � � � � � � � � � � � ��
������ Directives to override the ISA level � � � � � � � � � � � � � ��
������ Directives for extending MIPS �
 bit instructions

� ��
�����
 Directive to mark data as an instruction � � � � � � � � ��
������ Directives to save and restore options � � � � � � � � � � ��

���
 Hitachi SH Dependent Features ��
���
�� Options ��
���
�
 Syntax ��

���
�
�� Special Characters ��
���
�
�
 Register Names ��
���
�
�� Addressing Modes ��

���
�� Floating Point ��
���
�� SH Machine Directives ��
���
�� Opcodes ��

���� SPARC Dependent Features ��
������ Options ��
�����
 Enforcing aligned data ��
������ Floating Point �

������ Sparc Machine Directives �

���� Z���� Dependent Features ��
������ Options ��
�����
 Syntax ��

�����
�� Special Characters ��
�����
�
 Register Names ��
�����
�� Addressing Modes ��

������ Assembler Directives for the Z���� � � � � � � � � � � � � � ��
������ Opcodes ��

���� VAX Dependent Features ��
������ VAX Command�Line Options � � � � � � � � � � � � � � � � � � ��
�����
 VAX Floating Point �

������ Vax Machine Directives �

������ VAX Opcodes �

������ VAX Branch Improvement �

�����
 VAX Operands ��
������ Not Supported on VAX ��

���
 v��� Dependent Features ��
���
�� Options ��
���
�
 Syntax ��

���
�
�� Special Characters ��
���
�
�
 Register Names ��

���
�� Floating Point ���
���
�� V��� Machine Directives ���
���
�� Opcodes ��

� Reporting Bugs ���
��� Have you found a bug� ���
��
 How to report bugs ���

vii

�� Acknowledgements ���

Index ���

viii Using as

